咨询与建议

限定检索结果

文献类型

  • 341 篇 会议
  • 250 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 592 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 338 篇 工学
    • 245 篇 计算机科学与技术...
    • 215 篇 软件工程
    • 72 篇 生物工程
    • 63 篇 生物医学工程(可授...
    • 53 篇 信息与通信工程
    • 46 篇 控制科学与工程
    • 44 篇 光学工程
    • 41 篇 电气工程
    • 30 篇 电子科学与技术(可...
    • 28 篇 化学工程与技术
    • 20 篇 安全科学与工程
    • 18 篇 动力工程及工程热...
    • 17 篇 机械工程
    • 14 篇 仪器科学与技术
    • 14 篇 土木工程
    • 14 篇 交通运输工程
  • 226 篇 理学
    • 113 篇 数学
    • 76 篇 生物学
    • 67 篇 物理学
    • 57 篇 统计学(可授理学、...
    • 37 篇 化学
    • 22 篇 系统科学
  • 83 篇 管理学
    • 47 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 56 篇 医学
    • 42 篇 临床医学
    • 38 篇 基础医学(可授医学...
    • 26 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 19 篇 法学
    • 18 篇 社会学
  • 14 篇 农学
  • 12 篇 经济学
  • 5 篇 教育学

主题

  • 42 篇 accuracy
  • 40 篇 deep learning
  • 37 篇 machine learning
  • 26 篇 real-time system...
  • 25 篇 convolutional ne...
  • 23 篇 training
  • 21 篇 reviews
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 machine learning...
  • 18 篇 medical services
  • 18 篇 decision making
  • 15 篇 support vector m...
  • 15 篇 image segmentati...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 computational mo...
  • 13 篇 data models
  • 12 篇 reinforcement le...
  • 11 篇 reliability

机构

  • 18 篇 vector institute...
  • 18 篇 center for machi...
  • 17 篇 center for data ...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 13 篇 department of ar...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 10 篇 peking universit...
  • 10 篇 national enginee...
  • 10 篇 department of st...
  • 10 篇 beijing internat...
  • 9 篇 machine learning...
  • 8 篇 school of comput...
  • 7 篇 datta meghe inst...
  • 7 篇 datta meghe inst...
  • 7 篇 national biomedi...
  • 7 篇 australian insti...
  • 7 篇 university kasse...

作者

  • 22 篇 prateek verma
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 12 篇 aditya barhate
  • 11 篇 abhay tale
  • 10 篇 tale abhay
  • 10 篇 swapnil gundewar
  • 10 篇 von rudorff guid...
  • 9 篇 barhate aditya
  • 8 篇 zhu xiao xiang
  • 7 篇 li zhang
  • 7 篇 jie zhao
  • 7 篇 xia yong
  • 7 篇 xie yutong
  • 7 篇 bin dong
  • 7 篇 bjoern m. eskofi...

语言

  • 508 篇 英文
  • 83 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Engineering"
592 条 记 录,以下是541-550 订阅
排序:
Weisfeiler and Leman go machine learning: The Story so far
arXiv
收藏 引用
arXiv 2021年
作者: Morris, Christopher Lipman, Yaron Maron, Haggai Rieck, Bastian Kriege, Nils M. Grohe, Martin Fey, Matthias Borgwardt, Karsten Department of Computer Science RWTH Aachen University Aachen Germany Meta AI Research Department of Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot Israel NVIDIA Research Tel Aviv Israel AIDOS Lab Institute of AI for Health Helmholtz Zentrum München and Technical University of Munich Munich Germany Faculty of Computer Science University of Vienna Vienna Austria Research Network Data Science University of Vienna Vienna Austria Kumo.AI Mountain ViewCA United States Machine Learning & Computational Biology Lab Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland Swiss Institute of Bioinformatics Lausanne Switzerland
In recent years, algorithms and neural architectures based on the Weisfeiler–Leman algorithm, a well-known heuristic for the graph isomorphism problem, have emerged as a powerful tool for machine learning with graphs... 详细信息
来源: 评论
Depth selection for deep ReLU nets in feature extraction and generalization
arXiv
收藏 引用
arXiv 2020年
作者: Han, Zhi Yu, Siquan Lin, Shao-Bo Zhou, Ding-Xuan State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang China School of Information Science and Engineering Northeastern University Shenyang China Center of Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'an China School of Data Science Department of Mathematics City University of Hong Kong Hong Kong
Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature engineering techniques by taking advantage of human ingenuit... 详细信息
来源: 评论
Feature extraction for hyperspectral imagery: The evolution from shallow to deep
arXiv
收藏 引用
arXiv 2020年
作者: Rasti, Behnood Hong, Danfeng Hang, Renlong Ghamisi, Pedram Kang, Xudong Chanussot, Jocelyn Benediktsson, Jon Atli Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany Univ. Grenoble Alpes CNRS Grenoble INP GIPSAlab Grenoble38000 France Jiangsu Key Laboratory of Big Data Analysis Technology School of Automation Nanjing University of Information Science and Technology Nanjing210044 China Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany College of Electrical and Information Engineering Hunan University Changsha410082 China Key Laboratory of Visual Perception and Artificial Intelligence of Hunan Province Changsha410082 China Univ. Grenoble Alpes Inria CNRS Grenoble INP LJK GrenobleF-38000 France Faculty of Electrical and Computer Engineering University of Iceland Reykjavik101 Iceland Faculty of Electrical and Computer Engineering University of Iceland Reykjavik107 Iceland
The final version of the paper can be found in IEEE Geoscience and Remote Sensing Magazine. Hyperspectral images provide detailed spectral information through hundreds of (narrow) spectral channels (also known as dime... 详细信息
来源: 评论
Uplink-downlink duality between multiple-access and broadcast channels with compressing relays
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Liang Liu, Ya-Feng Patil, Pratik Yu, Wei the Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong the State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China The Edward S. Rogers Sr. Department of Electrical and Computer Engineering the University of Toronto the Department of Statistics and Data Science and the Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto 10 King’s College Road TorontoONM5S3G4 Canada
—Uplink-downlink duality refers to the fact that under a sum-power constraint, the capacity regions of a Gaussian multiple-access channel and a Gaussian broadcast channel with Hermitian transposed channel matrices ar... 详细信息
来源: 评论
The state-of-the-art in Cardiac MRI Reconstruction: Results of the CMRxRecon Challenge in MICCAI 2023
arXiv
收藏 引用
arXiv 2024年
作者: Lyu, Jun Qin, Chen Wang, Shuo Wang, Fanwen Li, Yan Wang, Zi Guo, Kunyuan Ouyang, Cheng Tänzer, Michael Liu, Meng Sun, Longyu Sun, Mengting Li, Qin Shi, Zhang Hua, Sha Li, Hao Chen, Zhensen Zhang, Zhenlin Xin, Bingyu Metaxas, Dimitris N. Yiasemis, George Teuwen, Jonas Zhang, Liping Chen, Weitian Pang, Yanwei Liu, Xiaohan Razumov, Artem Dylov, Dmitry V. Dou, Quan Yan, Kang Xue, Yuyang Du, Yuning Dietlmeier, Julia Garcia-Cabrera, Carles Hemidi, Ziad Al-Haj Vogt, Nora Xu, Ziqiang Zhang, Yajing Chu, Ying-Hua Chen, Weibo Bai, Wenjia Zhuang, Xiahai Qin, Jing Wu, Lianmin Yang, Guang Qu, Xiaobo Wang, He Wang, Chengyan Psychiatry Neuroimaging Laboratory Brigham and Women’s Hospital Harvard Medical School 399 Revolution Drive BostonMA02215 United States Department of Electrical and Electronic Engineering & I-X Imperial College London United Kingdom Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai China Department of Bioengineering & I-X Imperial College London LondonW12 7SL United Kingdom Cardiovascular Magnetic Resonance Unit Royal Brompton Hospital Guy’s and St Thomas’ NHS Foundation Trust LondonSW3 6NP United Kingdom Department of Radiology Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China Department of Electronic Science Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance National Institute for Data Science in Health and Medicine Institute of Artificial Intelligence Xiamen University Xiamen361102 China Department of Computing Department of Brain Sciences Imperial College London LondonSW7 2AZ United Kingdom Human Phenome Institute Fudan University 825 Zhangheng Road Pudong New District Shanghai201203 China Department of Radiology Zhongshan Hospital Fudan University Shanghai China Department of Cardiovascular Medicine Ruijin Hospital Lu Wan Branch Shanghai Jiao Tong University School of Medicine Shanghai China Institute of Science and Technology for Brain-Inspired Intelligence Fudan University Shanghai200433 China Department of Computer Science Rutgers University PiscatawayNJ08854 United States AI for Oncology Netherlands Cancer Institute Plesmanlaan 121 Amsterdam1066 CX Netherlands Department of Imaging and Interventional Radiology The Chinese University of Hong Kong Hong Kong TJK-BIIT Lab School of Electrical and Information Engineering Tianjin University Tianjin300072 China Skolkovo Institute Of Science And Technology Center for Artificial Intelligence Technology 30/1 Bolshoy blvd. Moscow121205 Russia Department of Biomedical Engineering University of Virginia
Cardiac magnetic resonance imaging (MRI) provides detailed and quantitative evaluation of the heart’s structure, function, and tissue characteristics with high-resolution spatial-temporal imaging. However, its slow i... 详细信息
来源: 评论
Lessons Learned from Assessing Trustworthy AI in Practice
收藏 引用
Digital Society 2023年 第3期2卷 1-25页
作者: Vetter, Dennis Amann, Julia Bruneault, Frédérick Coffee, Megan Düdder, Boris Gallucci, Alessio Gilbert, Thomas Krendl Hagendorff, Thilo van Halem, Irmhild Hickman, Eleanore Hildt, Elisabeth Holm, Sune Kararigas, Georgios Kringen, Pedro Madai, Vince I. Wiinblad Mathez, Emilie Tithi, Jesmin Jahan Westerlund, Magnus Wurth, Renee Zicari, Roberto V. Computational Vision and Artificial Intelligence Lab Goethe University Frankfurt Frankfurt Am Main Germany Z-Inspection® Initiative Venice Italy Health Ethics and Policy Lab ETH Zurich Zurich Switzerland Strategy and Innovation Careum Foundation Zurich Switzerland Philosophie Departement Collège André-Laurendeau Montréal Canada École Des Médias Université du Québec À Montréal Montréal Canada Department of Medicine Division of Infectious Diseases and Immunology New York University Grossman School of Medicine New York City USA Department of Computer Science University of Copenhagen Copenhagen Denmark Digital Life Initiative Cornell Tech New York City USA Cluster of Excellence “Machine Learning: New Perspectives for Science” University of Tuebingen Tuebingen Germany School of Law University of Bristol Bristol UK Center for the Study of Ethics in the Professions Illinois Institute of Technology Chicago USA Department of Business Management and Analytics Arcada University of Applied Sciences Helsinki Finland Department of Food & Resource Economics University of Copenhagen Copenhagen Denmark Department of Physiology Faculty of Medicine University of Iceland Reykjavik Iceland QUEST Centre for Responsible Research Berlin Institute of Health Charité Universitätsmedizin Berlin Berlin Germany Faculty of Computing Engineering and the Built Environment School of Computing and Digital Technology Birmingham City University Birmingham UK Parallel Computing Labs Intel Santa Clara USA School of Economics Innovation and Technology Kristiania University College Oslo Norway Data Science Graduate School Seoul National University Seoul South Korea
Building artificial intelligence (AI) systems that adhere to ethical standards is a complex problem. Even though a multitude of guidelines for the design and development of such trustworthy AI systems exist, these gui...
来源: 评论
Analyzing the Structure of Attention in a Transformer Language Model
arXiv
收藏 引用
arXiv 2019年
作者: Vig, Jesse Belinkov, Yonatan Palo Alto Research Center Machine Learning and Data Science Group Interaction and Analytics Lab Palo AltoCA United States Harvard John A. Paulson School of Engineering and Applied Sciences MIT Computer Science and Artificial Intelligence Laboratory CambridgeMA United States
The Transformer is a fully attention-based alternative to recurrent networks that has achieved state-of-the-art results across a range of NLP tasks. In this paper, we analyze the structure of attention in a Transforme... 详细信息
来源: 评论
Structuring the Problem Space for Model-Based Systems engineering
收藏 引用
Insight 2019年 第1期22卷 45-50页
作者: Wrigley, J. Craig Wide-ranging experience of systems engineering for over 35 years through innovative work on systems ranging from new demand access protocols for military data links through to large scale intelligence processing systems applying artificial intelligence and machine learning and assessments of quantum technologies.
Systems engineering is evolving from a largely text-based endeavour towards a more graphical and model-based approach. While modelling of the structural aspects of a system is well developed, the modelling of requirem... 详细信息
来源: 评论
Automatic identification of types of alterations in historical manuscripts
arXiv
收藏 引用
arXiv 2020年
作者: Lassner, David Baillot, Anne Dogadov, Sergej Müller, Klaus-Robert Nakajima, Shinichi Machine Learning Group Technische Universität Berlin Berlin10587 Germany Le Mans Université Le Mans72085 France Berlin Big Data Center Berlin10587 Germany Department of Brain and Cognitive Engineering Korea University Anam-dong Seongbuk-gu Seoul136-713 Korea Republic of Max-Planck-Institut für Informatik Saarbrücken Germany Berliner Zentrum für Maschinelles Lernen Berlin10587 Germany RIKEN Center for AIP Tokyo103-0027 Japan
Alterations in historical manuscripts such as letters represent a promising field of research. On the one hand, they help understand the construction of text. On the other hand, topics that are being considered sensit... 详细信息
来源: 评论
VulnerVAN: A Vulnerable Network Generation Tool
VulnerVAN: A Vulnerable Network Generation Tool
收藏 引用
MILCOM, Military Communications Conference
作者: Sridhar Venkatesan Jason A. Youzwak Shridatt Sugrim Cho-Yu J. Chiang Alexander Poylisher Matthew Witkowski Gary Walther Michelle Wolberg Ritu Chadha E. Allison Newcomb Blaine Hoffman Norbou Buchler Machine Learning and Data Analytics Research Perspecta Labs Inc. Basking Ridge NJ USA Computational and Information Science Directorate U.S. CCDC Army Research Laboratory Aberdeen MD USA Human Research and Engineering Directorate U.S. CCDC Army Research Laboratory
Cyber training, security testing, and research and development activities are vital to improve the security posture of a network. Currently, many institutions use cyber security testbeds to conduct these activities in... 详细信息
来源: 评论