咨询与建议

限定检索结果

文献类型

  • 42 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 58 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 43 篇 工学
    • 27 篇 计算机科学与技术...
    • 25 篇 软件工程
    • 9 篇 化学工程与技术
    • 6 篇 电气工程
    • 5 篇 光学工程
    • 4 篇 生物医学工程(可授...
    • 4 篇 生物工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 信息与通信工程
    • 3 篇 土木工程
    • 3 篇 航空宇航科学与技...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 动力工程及工程热...
    • 2 篇 控制科学与工程
  • 35 篇 理学
    • 19 篇 物理学
    • 16 篇 数学
    • 12 篇 化学
    • 7 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 2 篇 地球物理学
    • 1 篇 海洋科学
  • 8 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 6 篇 医学
    • 5 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
    • 2 篇 药学(可授医学、理...
  • 2 篇 农学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 6 篇 machine learning
  • 2 篇 image segmentati...
  • 2 篇 carrier concentr...
  • 2 篇 forecasting
  • 1 篇 dtx
  • 1 篇 genetic programm...
  • 1 篇 reliability
  • 1 篇 scalability
  • 1 篇 spondyloarthriti...
  • 1 篇 routing
  • 1 篇 reinforcement le...
  • 1 篇 rendering (compu...
  • 1 篇 readability metr...
  • 1 篇 inverse problems
  • 1 篇 deep learning
  • 1 篇 galaxies
  • 1 篇 magnetic resonan...
  • 1 篇 svm
  • 1 篇 ecosystems
  • 1 篇 space debris

机构

  • 18 篇 vector institute...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 7 篇 university kasse...
  • 5 篇 university of vi...
  • 4 篇 heinrich-plett-s...
  • 3 篇 department of me...
  • 3 篇 department of in...
  • 3 篇 department of ch...
  • 3 篇 university of vi...
  • 3 篇 department of ar...
  • 3 篇 department of el...
  • 3 篇 department of co...
  • 3 篇 university of vi...
  • 3 篇 berlin institute...
  • 3 篇 department of ar...
  • 3 篇 acceleration con...
  • 3 篇 department of ph...
  • 3 篇 department of ma...
  • 3 篇 department of el...

作者

  • 16 篇 von lilienfeld o...
  • 10 篇 von rudorff guid...
  • 5 篇 khan danish
  • 5 篇 heinen stefan
  • 3 篇 bharadwaj vyoma
  • 3 篇 arrieta daniel j...
  • 3 篇 jain alankriti
  • 3 篇 thuluva sushmith
  • 3 篇 pulicallu greesh...
  • 3 篇 kadagadakai vish...
  • 3 篇 mitra ruhi
  • 3 篇 shukla aayush
  • 3 篇 anatole von lili...
  • 3 篇 hermansson kerst...
  • 3 篇 kodukula ananya
  • 3 篇 weinreich jan
  • 3 篇 krug simon león
  • 3 篇 karandashev kons...
  • 3 篇 rai riddhi
  • 2 篇 tavares tiago r.

语言

  • 51 篇 英文
  • 6 篇 其他
检索条件"机构=Machine Learning and Data Engineering University of Münster"
58 条 记 录,以下是31-40 订阅
排序:
An Innovative Design Of A Reusable Constellation Of CubeSats For Space Debris Removal  73
An Innovative Design Of A Reusable Constellation Of CubeSats...
收藏 引用
73rd International Astronautical Congress, IAC 2022
作者: Shukla, Aayush Thuluva, Sushmith Kodukula, Ananya Bharadwaj, Vyoma Jain, Alankriti Shadaksharaiah, Anushree maligehalli Pulicallu, Greeshmanth Kadagadakai, Vishnurat Rai, Riddhi mitra, Ruhi Prabhu, m. Nanditha Department of Artificial Intelligence & Machine Learning Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India Department of Electrical and Computer Engineering Carnegie Mellon University 5000 Forbes Ave PittsburghPA15213 United States Department of Computer Science & Engineering Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India Department of Electronics & Telecommunication Engineering Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India Department of Electronics & Instrumentation Engineering Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India Department of Mechanical Engineering Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India Department of Artificial Intelligence & Data Science Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India Department of Information Science & Engineering Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India
Space debris is one significant setback in our attempt to explore space and enhance satellite technology. Eradicating this upshot is eminent to our future missions and a safe environment for our planet. The scale of t... 详细信息
来源: 评论
Impact of noise on inverse design: The case of NmR spectra matching
arXiv
收藏 引用
arXiv 2023年
作者: Lemm, Dominik von Rudorff, Guido Falk von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 14-16 ViennaAT-1090 Austria University of Vienna Vienna Doctoral School in Physics Boltzmanngasse 5 ViennaAT-1090 Austria University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Heinrich-Plett-Straße 40 Kassel34132 Germany Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Despite its fundamental importance and widespread use for assessing reaction success in organic chemistry, deducing chemical structures from nuclear magnetic resonance (NmR) measurements has remained largely manual an... 详细信息
来源: 评论
Improved decision making with similarity based machine learning: Applications in chemistry
arXiv
收藏 引用
arXiv 2022年
作者: Lemm, Dominik von Rudorff, Guido Falk von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 14-16 ViennaAT-1090 Austria University of Vienna Vienna Doctoral School in Physics Boltzmanngasse 5 ViennaAT-1090 Austria Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Despite the fundamental progress in autonomous molecular and materials discovery, data scarcity throughout chemical compound space still severely hampers the use of modern ready-made machine learning models as they re... 详细信息
来源: 评论
An Investigation of Smart Detection for Small Lung Tumor with Tumor Pattern Recognition Algorithm
An Investigation of Smart Detection for Small Lung Tumor wit...
收藏 引用
Artificial Intelligence and Knowledge Discovery in Concurrent engineering (ICECONF), International Conference on
作者: G. Hariharan P. Prasanth P. Arthi Devarani T. Sajana Indhumathi C Ashok Kumar Deportment of Artificial Intelligence and Machine Learning Malla Reddy University Hyderabad Telangana India Department of Information Technology Vel Tech Multi Tech Dr. Rangarajan Dr.Sakunthala Engineering College Chennai Tamil Nadu India Department of Electronics and Communication Engineering R. M K College of Engineering and Technology Thiruvallur Tamil Nadu India Department of Artificial Intelligence and Data Science KoneruLakshmaiah Education Foundation Vaddeswaram Andhra Pradesh India Department of Computer Science and Business Systems R.M. K. Engineering College Kavaraipettai Tamil Nadu Department of Computer Science BanasthaliVidyapith Rajasthan India
The Small-cell lung tumor is the prime public concern, resulting in increased mortality. Various therapeutic approaches have made progress in the handling of small-cell lung tumor. It's considered the backbone of ... 详细信息
来源: 评论
Relative energies without electronic perturbations via Alchemical Integral Transform
arXiv
收藏 引用
arXiv 2022年
作者: Krug, Simon León von Rudorff, Guido Falk von Lilienfeld, O. Anatole University of Vienna Computational Materials Physics Kolingasse 14-16 Vienna1090 Austria Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany University of California Los Angeles 460 Portola Plaza Los AngelesCA90095 United States Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada
We show that the energy of a perturbed system can be fully recovered from the unperturbed system's electron density. We derive an alchemical integral transform by parametrizing space in terms of transmutations, th... 详细信息
来源: 评论
Weisfeiler and Leman go machine learning: the story so far
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2023年 第1期24卷 15865-15923页
作者: Christopher morris Yaron Lipman Haggai maron Bastian Rieck Nils m. Kriege martin Grohe matthias Fey Karsten Borgwardt Department of Computer Science RWTH Aachen University Aachen Germany Meta AI Research Department of Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot Israel NVIDIA Research Tel Aviv Israel AIDOS Lab Institute of AI for Health Helmholtz Zentrum München and Technical University of Munich Munich Germany Faculty of Computer Science and Research Network Data Science University of Vienna Vienna Austria Kumo.AI Mountain View CA Machine Learning & Computational Biology Lab Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland and Swiss Institute of Bioinformatics Lausanne Switzerland
In recent years, algorithms and neural architectures based on the Weisfeiler-Leman algorithm, a well-known heuristic for the graph isomorphism problem, have emerged as a powerful tool for machine learning with graphs ... 详细信息
来源: 评论
Antisymmetry rules of response properties in certain chemical spaces
arXiv
收藏 引用
arXiv 2025年
作者: Shiraogawa, Takafumi Krug, Simon León Ehara, masahiro von Lilienfeld, O. Anatole Institute for Molecular Science National Institutes of Natural Sciences 38 Nishigonaka Myodaiji Okazaki444-8585 Japan Research Center for Computational Science National Institutes of Natural Sciences 38 Nishigonaka Myodaiji Okazaki444-8585 Japan The Graduate University for Advanced Studies 38 Nishigonaka Myodaiji Okazaki444-8585 Japan Machine Learning Group Technische Universität Berlin Berlin10587 Germany Chemical Physics Theory Group Department of Chemistry University of Toronto St. George Campus TorontoM5S3H6 Ontario Canada Department of Materials Science and Engineering University of Toronto St. George Campus TorontoM5S 3E4 Ontario Canada Vector Institute for Artificial Intelligence TorontoM5S 1M1 Ontario Canada Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Department of Physics University of Toronto St. George Campus TorontoM5S 1A7 Ontario Canada Acceleration Consortium University of Toronto TorontoM5R 0A3 Ontario Canada
Understanding chemical compound space (CCS), a set of molecules and materials, is crucial for the rational discovery of molecules and materials. Concepts of symmetry have recently been introduced into CCS to account f... 详细信息
来源: 评论
Encrypted machine learning of molecular quantum properties
arXiv
收藏 引用
arXiv 2022年
作者: Weinreich, Jan von Rudorff, Guido Falk von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 14-16 WienAT-1090 Austria University of Vienna Vienna Doctoral School in Physics Boltzmanngasse 5 Vienna1090 Austria University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Large machine learning models with improved predictions have become widely available in the chemical sciences. Unfortunately, these models do not protect the privacy necessary within commercial settings, prohibiting t... 详细信息
来源: 评论
From quantum alchemy to Hammett's equation: Covalent bonding from atomic energy partitioning
arXiv
收藏 引用
arXiv 2022年
作者: Sahre, michael J. von Rudorff, Guido Falk von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 14-16 Vienna1090 Austria Währinger Str. 42 Vienna1090 Austria University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
We present an intuitive and general analytical approximation estimating the energy of covalent single and double bonds between participating atoms in terms of their respective nuclear charges with just three parameter... 详细信息
来源: 评论
Towards DmC accuracy across chemical space with scalable ∆-QmL
arXiv
收藏 引用
arXiv 2022年
作者: Huang, Bing von Lilienfeld, O. Anatole Krogel, Jaron T. Benali, Anouar University of Vienna Faculty of Physics Kolingasse 14-16 Vienna1090 Austria Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Materials Science and Technology Division Oak Ridge National Laboratory Oak RidgeTN37831 United States Computational Sciences Division Argonne National Laboratory ArgonneIL60439 United States
In the past decade, quantum diffusion monte Carlo (DmC) has been demonstrated to successfully predict the energetics and properties of a wide range of molecules and solids by numerically solving the electronic many-bo... 详细信息
来源: 评论