咨询与建议

限定检索结果

文献类型

  • 9 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 12 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 工学
    • 7 篇 计算机科学与技术...
    • 4 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 生物医学工程(可授...
  • 6 篇 理学
    • 4 篇 数学
    • 2 篇 物理学
    • 2 篇 统计学(可授理学、...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...

主题

  • 2 篇 optical characte...
  • 1 篇 task analysis
  • 1 篇 reflection
  • 1 篇 mixers (machiner...
  • 1 篇 incomplete chole...
  • 1 篇 efficient hierar...
  • 1 篇 learning algorit...
  • 1 篇 contrastive lear...
  • 1 篇 linear programmi...
  • 1 篇 annotations
  • 1 篇 computational li...
  • 1 篇 social network s...
  • 1 篇 drives
  • 1 篇 costs
  • 1 篇 codes
  • 1 篇 blogs
  • 1 篇 errors
  • 1 篇 efficient kernel...
  • 1 篇 image-level feat...
  • 1 篇 prediction algor...

机构

  • 4 篇 digital philolog...
  • 2 篇 beijing key lab ...
  • 2 篇 bayerische staat...
  • 2 篇 natural language...
  • 2 篇 key lab of machi...
  • 2 篇 nlp expert cente...
  • 1 篇 data mining and ...
  • 1 篇 department of pa...
  • 1 篇 university of ca...
  • 1 篇 data science and...
  • 1 篇 department of me...
  • 1 篇 center for infor...
  • 1 篇 riken center for...
  • 1 篇 cape analytics m...
  • 1 篇 australian insti...
  • 1 篇 data mining and ...
  • 1 篇 univie docotoral...
  • 1 篇 candidate at dat...
  • 1 篇 bayerische staat...
  • 1 篇 key lab of big d...

作者

  • 5 篇 märz luisa
  • 3 篇 roth benjamin
  • 3 篇 schweter stefan
  • 2 篇 çano erion
  • 2 篇 lynn khin thidar
  • 2 篇 asgari ehsaneddi...
  • 2 篇 schmid katharina
  • 2 篇 zimmermann franz...
  • 2 篇 braune fabienne
  • 1 篇 jian yu
  • 1 篇 miyoshi hiroaki
  • 1 篇 takeuchi ichiro
  • 1 篇 suhang wang
  • 1 篇 ziheng yan
  • 1 篇 schütze hinrich
  • 1 篇 xie bojun
  • 1 篇 poerner nina
  • 1 篇 huizhang
  • 1 篇 hashimoto noriak...
  • 1 篇 nwe mar mar

语言

  • 12 篇 英文
检索条件"机构=Machine Learning and Data Mining Lab"
12 条 记 录,以下是1-10 订阅
Efficient image representation for object recognition via pivots selection
收藏 引用
Frontiers of Computer Science 2015年 第3期9卷 383-391页
作者: Bojun XIE Yi LIU HuiZHANG Jian YU Beijing Key Lab of Traffic Data Analysis and Mining School of Computer and Information Technology Beijing Jiaotong University Beijing 100044 China Key Lab of Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Baoding 071000 China
Patch-level features are essential for achieving good performance in computer vision tasks. Besides well- known pre-defined patch-level descriptors such as scalein- variant feature transform (SIFT) and histogram of ... 详细信息
来源: 评论
hmBERT: Historical Multilingual Language Models for Named Entity Recognition
hmBERT: Historical Multilingual Language Models for Named En...
收藏 引用
2022 Conference and labs of the Evaluation Forum, CLEF 2022
作者: Schweter, Stefan März, Luisa Schmid, Katharina Çano, Erion Bayerische Staatsbibliothek München Digital Library/ Munich Digitization Center Munich Germany Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria Natural Language Processing Expert Center Data:Lab Volkswagen AG Munich Germany
Compared to standard Named Entity Recognition (NER), identifying persons, locations, and organizations in historical texts constitutes a big challenge. To obtain machine-readable corpora, the historical text is usuall... 详细信息
来源: 评论
Effective resampling approach for skewed distribution on imbalanced data set
IAENG International Journal of Computer Science
收藏 引用
IAENG International Journal of Computer Science 2020年 第2期47卷 234-249页
作者: Nwe, Mar Mar Lynn, Khin Thidar Data Mining and Machine Learning Lab University of Computer Studies Mandalay Myanmar Faculty of Information Science Department University of Computer Studies Mandalay Myanmar
Accurate classification of unknown input data for imbalanced data sets is difficult, because the predictions of learning classifiers tend to be biased towards the majority class and ignore the minority class. Moreover... 详细信息
来源: 评论
Handling the Concept Drifts Based on Ensemble learning with Adaptive Windows
IAENG International Journal of Computer Science
收藏 引用
IAENG International Journal of Computer Science 2021年 第3期48卷 1-16页
作者: Myint, Tin Mar Lynn, Khin Thidar Candidate at Data Mining and Machine Learning Lab University of Computer Studies Mandalay Myanmar Professor at Faculty of Information Science University of Computer Studies Mandalay Myanmar
Continuous learning from streaming data is one of the contemporary most challenging topics. learning algorithms not only need to handle fast-moving big data but should also be able to adapt to future evolving changes.... 详细信息
来源: 评论
KnowMAN: Weakly supervised multinomial adversarial networks
arXiv
收藏 引用
arXiv 2021年
作者: März, Luisa Asgari, Ehsaneddin Braune, Fabienne Zimmermann, Franziska Roth, Benjamin Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria Nlp Expert Center Data:Lab Volkswagen Ag Munich Germany
The absence of labeled data for training neural models is often addressed by leveraging knowledge about the specific task, resulting in heuristic but noisy labels. The knowledge is captured in labeling functions, whic... 详细信息
来源: 评论
Local and Global Information Preserved Network Embedding
Local and Global Information Preserved Network Embedding
收藏 引用
International Conference on Advances in Social Network Analysis and mining, ASONAM
作者: Yao Ma Suhang Wang Jiliang Tang Data Science and Engineering Lab Michigan State University East Lansing MI USA Data Mining and Machine Learning Lab Arizona State University Tempe AZ USA
Networks such as social networks, airplane networks, and citation networks are ubiquitous. To apply advanced machine learning algorithms to network data, low-dimensional and continuous representations are desired. To ... 详细信息
来源: 评论
HmBERT: Historical Multilingual Language Models for Named Entity Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Schweter, Stefan März, Luisa Schmid, Katharina Çano, Erion Bayerische Staatsbibliothek München Digital Library/ Munich Digitization Center Munich Germany Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria Natural Language Processing Expert Center Data:Lab Volkswagen AG Munich Germany
Compared to standard Named Entity Recognition (NER), identifying persons, locations, and organizations in historical texts constitutes a big challenge. To obtain machine-readable corpora, the historical text is usuall... 详细信息
来源: 评论
Efficient image representation for object recognition via pivots selection
收藏 引用
Frontiers of Computer Science 2014年
作者: Xie, Bojun Liu, Yi Zhang, Hui Yu, Jian Beijing Key Lab of Traffic Data Analysis and Mining School of Computer and Information Technology Beijing Jiaotong University Beijing100044 China Key Lab of Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Baoding071000 China
Patch-level features are essential for achieving good performance in computer vision tasks. Besides well-known pre-defined patch-level descriptors such as scaleinvariant feature transform (SIFT) and histogram of orien... 详细信息
来源: 评论
Mixing Histopathology Prototypes into Robust Slide-Level Representations for Cancer Subtyping
arXiv
收藏 引用
arXiv 2023年
作者: Butke, Joshua Hashimoto, Noriaki Takeuchi, Ichiro Miyoshi, Hiroaki Ohshima, Koichi Sakuma, Jun Machine Learning and Data Mining Lab University of Tsukuba Japan RIKEN Center for Advanced Intelligence Project Japan Department of Mechanical Systems Engineering Nagoya University Japan Department of Pathology Kurume University Japan Department of Computer Science Tokyo Institute of Technology Japan
Whole-slide image analysis via the means of computational pathology often relies on processing tessellated gigapixel images with only slide-level labels available. Applying multiple instance learning-based methods or ... 详细信息
来源: 评论
data centric domain adaptation for historical text with OCR errors
arXiv
收藏 引用
arXiv 2021年
作者: März, Luisa Schweter, Stefan Poerner, Nina Roth, Benjamin Schütze, Hinrich Center for Information and Language Processing Ludwig Maximilian University Munich Germany Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria Bayerische Staatsbibliothek München Digital Library/Munich Digitization Center Munich Germany NLP Expert Center Data:Lab Volkswagen AG Munich Germany
We propose new methods for in-domain and cross-domain Named Entity Recognition (NER) on historical data for Dutch and French. For the cross-domain case, we address domain shift by integrating unsupervised in-domain da... 详细信息
来源: 评论