咨询与建议

限定检索结果

文献类型

  • 686 篇 期刊文献
  • 521 篇 会议
  • 3 册 图书

馆藏范围

  • 1,210 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 728 篇 工学
    • 507 篇 计算机科学与技术...
    • 438 篇 软件工程
    • 160 篇 生物工程
    • 128 篇 信息与通信工程
    • 101 篇 控制科学与工程
    • 92 篇 生物医学工程(可授...
    • 69 篇 光学工程
    • 60 篇 电气工程
    • 49 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 30 篇 机械工程
    • 27 篇 仪器科学与技术
    • 24 篇 建筑学
    • 24 篇 土木工程
  • 542 篇 理学
    • 310 篇 数学
    • 174 篇 生物学
    • 165 篇 统计学(可授理学、...
    • 123 篇 物理学
    • 61 篇 系统科学
    • 59 篇 化学
  • 179 篇 管理学
    • 93 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 55 篇 工商管理
  • 78 篇 医学
    • 63 篇 临床医学
    • 60 篇 基础医学(可授医学...
    • 34 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 30 篇 法学
    • 28 篇 社会学
  • 25 篇 经济学
    • 25 篇 应用经济学
  • 20 篇 农学
  • 11 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 72 篇 machine learning
  • 62 篇 accuracy
  • 60 篇 deep learning
  • 36 篇 training
  • 32 篇 convolutional ne...
  • 29 篇 real-time system...
  • 26 篇 predictive model...
  • 26 篇 feature extracti...
  • 22 篇 reviews
  • 22 篇 decision making
  • 21 篇 artificial intel...
  • 20 篇 reinforcement le...
  • 20 篇 diseases
  • 20 篇 forecasting
  • 19 篇 image segmentati...
  • 19 篇 medical services
  • 19 篇 machine learning...
  • 17 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 data models

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 37 篇 center for data ...
  • 34 篇 center for machi...
  • 33 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 17 篇 machine learning...
  • 16 篇 munich center fo...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich data scie...
  • 12 篇 machine learning...
  • 12 篇 beijing internat...
  • 12 篇 departments of c...
  • 11 篇 department of ar...

作者

  • 67 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 16 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 12 篇 wang liwei

语言

  • 1,086 篇 英文
  • 121 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science"
1210 条 记 录,以下是1-10 订阅
排序:
RandD activities at machine learning and data science center
收藏 引用
NTT Technical Review 2016年 第2期14卷
作者: Ueda, Naonori Deprtment of Machine Learning and Data Science Center Senior Distinguished Scientist NTT Communication Science Laboratories Japan
The machine learning and data science Center (MLC) was established in April 2013 as a research and development hub of big data analysis technologies at NTT laboratories with the aim of creating innovative services fro... 详细信息
来源: 评论
Parallelizing Video Anomaly Detection Using Reconstruction and Future Frame Prediction  6th
Parallelizing Video Anomaly Detection Using Reconstruction a...
收藏 引用
6th International conference on communication and computational technologies, ICCCT 2024
作者: Vasudevan, Vibhav Ramakrishnan, Srinivas Seth, Utkarsh Shreya, M.B. Shylaja, S.S. Center for Data Science and Applied Machine Learning RR Campus Karnataka Bengaluru India
Video anomaly detection (VAD) is a demanding task because the very definition of anomalies in videos is inherently inconclusive and also due to the high manpower required to supervise lengthy videos. This research pap... 详细信息
来源: 评论
Optimized Automated Stock Trading using DQN and Double DQN
Optimized Automated Stock Trading using DQN and Double DQN
收藏 引用
2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems, IACIS 2024
作者: Bharadwaj, Gurudutt S Pratap, David Darapaneni, Narayana Pes University Department of Computer Science Bengaluru India Great Learning Department of Data Science and Machine Learning Bengaluru India
Stock Portfolio management involves managing the buying, holding and selling decisions for the various stocks in the portfolio. There has been work where Reinforcement learning (RL) based actor-critic methods like Dee... 详细信息
来源: 评论
AgentFusion: A Multi-Agent Approach to Accurate Text Generation
AgentFusion: A Multi-Agent Approach to Accurate Text Generat...
收藏 引用
2024 International Conference on Electrical and Computer Engineering Researches, ICECER 2024
作者: Saeid, Yasser Kopinski, Thomas South Westphalia University of Applied Sciences Machine Learning - Data Science Meschede Germany
The rise of large language models (LLMs) like Chat-GPT has significantly transformed the field of natural language processing (NLP). These models are now central to many companies' operations due to their capabili... 详细信息
来源: 评论
Video understanding : Tagging of videos through self attentive learnable key descriptors  11
Video understanding : Tagging of videos through self attenti...
收藏 引用
11th International Symposium on Electronic Systems Devices and Computing, ESDC 2023
作者: Darapaneni, Narayana Paduri, Anwesh Reddy Thomas, Dinu Jisha, C.U. Shrivastava, Abhinao Biradar, Seema Pes University Data Science and Machine Learning Bangalore India
In today's world, the UGC (User Generated Contents) videos have increased exponentially. Billions of videos are uploaded, played and exchanged between different actors. In this context, automatic video content cla... 详细信息
来源: 评论
Video Label Enhancing and Standardization through Transcription and WikiId Mapping Techniques  11
Video Label Enhancing and Standardization through Transcript...
收藏 引用
11th International Symposium on Electronic Systems Devices and Computing, ESDC 2023
作者: Thomas, Dinu Pratap, David Sudha, B.G. Pes University Data Science and Machine Learning Bangalore India
Volume of video content surpass all other content types in internet. As per the reports from different sources, video traffic had acquired 82% of internet usage in 2022. Video is going to be more important in the year... 详细信息
来源: 评论
Hybrid speech enhancement in modulation domain
收藏 引用
Multimedia Tools and Applications 2024年 1-31页
作者: P S, Praveen Kumar H S, Jayanna Technical Lead-Machine Learning Merit Data and Technology Tamil Nadu Chennai India Department of Information Science and Engineering Siddaganga Institute of Technology Karnataka Tumkur India
This paper presents a comprehensive study on speech enhancement (SE) techniques, particularly focusing on the utilization of the discrete cosine transform (DCT) in the modulation domain (MD) in combination with the mi... 详细信息
来源: 评论
Privacy Preserving data Imputation via Multi-party Computation for Medical Applications
Privacy Preserving Data Imputation via Multi-party Computati...
收藏 引用
2024 IEEE International Conference on E-Health Networking, Application and Services, HealthCom 2024
作者: Jentsch, Julia Ünal, Ali Burak Mağara, Şeyma Selcan Akgün, Mete Department of Computer Science Medical Data Privacy and Privacy Preserving Machine Learning Tübingen Germany
Handling missing data is crucial in machine learning, but many datasets contain gaps due to errors or non-response. Unlike traditional methods such as listwise deletion, which are simple but inadequate, the literature... 详细信息
来源: 评论
Image Recognition for Wildlife Conservation
Image Recognition for Wildlife Conservation
收藏 引用
2025 IEEE International Conference on Computational, Communication and Information Technology, ICCCIT 2025
作者: Charanya, P. Sridharan, S. Yuvan Shankar, S. Sriram, M. Yashvanth, K.P. Department of Artificial Intelligence and Machine Learning Coimbatore India Department of Artificial Intelligence and Data Science Coimbatore India
This study adopts an empirical approach to evaluate the efficacy of image processing methods in conservation efforts for animals. The initial phase involves the collection of data from various sources within the natur... 详细信息
来源: 评论
Structural Breakpoint Detection in Noisy Time Series Using an Augmented Matrix Profile Index  24
Structural Breakpoint Detection in Noisy Time Series Using a...
收藏 引用
24th IEEE International Conference on data Mining Workshops, ICDMW 2024
作者: Fuchs, Marco Catholic University of Eichstätt-Ingolstadt Mathematical Institute for Machine Learning and Data Science Ingolstadt Germany
We introduce a method for partitioning a time series into segments. The method extends the recently introduced Fast Low-Cost Semantic Segmentation (FLUSS) algorithm to increase its robustness against noise and to auto... 详细信息
来源: 评论