咨询与建议

限定检索结果

文献类型

  • 690 篇 期刊文献
  • 532 篇 会议
  • 3 册 图书

馆藏范围

  • 1,225 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 741 篇 工学
    • 511 篇 计算机科学与技术...
    • 439 篇 软件工程
    • 167 篇 生物工程
    • 129 篇 信息与通信工程
    • 102 篇 控制科学与工程
    • 100 篇 生物医学工程(可授...
    • 69 篇 光学工程
    • 62 篇 电气工程
    • 49 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 29 篇 机械工程
    • 27 篇 仪器科学与技术
    • 24 篇 建筑学
    • 24 篇 土木工程
  • 555 篇 理学
    • 314 篇 数学
    • 176 篇 生物学
    • 166 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 66 篇 化学
    • 63 篇 系统科学
  • 179 篇 管理学
    • 92 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 55 篇 工商管理
  • 88 篇 医学
    • 72 篇 临床医学
    • 62 篇 基础医学(可授医学...
    • 37 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 29 篇 法学
    • 27 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 20 篇 农学
  • 12 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 73 篇 machine learning
  • 63 篇 accuracy
  • 61 篇 deep learning
  • 36 篇 training
  • 32 篇 convolutional ne...
  • 29 篇 real-time system...
  • 26 篇 predictive model...
  • 26 篇 feature extracti...
  • 22 篇 reviews
  • 22 篇 decision making
  • 21 篇 reinforcement le...
  • 21 篇 image segmentati...
  • 21 篇 artificial intel...
  • 20 篇 medical services
  • 20 篇 diseases
  • 20 篇 machine learning...
  • 20 篇 forecasting
  • 17 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 data models

机构

  • 59 篇 machine learning...
  • 46 篇 department of st...
  • 40 篇 center for data ...
  • 37 篇 center for machi...
  • 33 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 17 篇 munich center fo...
  • 17 篇 machine learning...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich data scie...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...

作者

  • 68 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 15 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 dong bin

语言

  • 1,020 篇 英文
  • 202 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science"
1225 条 记 录,以下是1091-1100 订阅
排序:
machine learning to detect recent recreational drug use in intensive cardiac care units
收藏 引用
Archives of Cardiovascular Diseases 2025年 第5期118卷 277-286页
作者: El Bèze, Nathan Hamzi, Kenza Henry, Patrick Trimaille, Antonin El Ouahidi, Amine Zakine, Cyril Nallet, Olivier Delmas, Clément Aboyans, Victor Goralski, Marc Albert, Franck Bonnefoy-Cudraz, Eric Bochaton, Thomas Schurtz, Guillaume Lim, Pascal Lequipar, Antoine Gonçalves, Trecy Gall, Emmanuel Pommier, Thibaut Lemarchand, Léo Meune, Christophe Azzakani, Sonia Bouleti, Claire Amar, Jonas Dillinger, Jean-Guillaume Steg, P. Gabriel Vicaut, Eric Toupin, Solenn Pezel, Théo Inserm MASCOT – UMRS 942 Department of Cardiology University Hospital of Lariboisière Université Paris-Cité AP–HP Paris 75010 France Multimodality Imaging Research for Analysis Core Laboratory: Artificial Intelligence (MIRACL.ai) Department of Data Science Machine Learning and Artificial Intelligence in Health University Hospital of Lariboisière AP–HP Paris 75010 France Department of Cardiovascular Medicine Nouvel Hôpital Civil Strasbourg University Hospital Strasbourg 67000 France Department of Cardiology University Hospital of Brest Brest 29609 France NCT+ Saint-Cyr-sur-Loire 37540 France Department of Cardiology Hôpital Montfermeil Montfermeil 93370 France Department of Cardiology Rangueil University Hospital Toulouse 31000 France Department of Cardiology University Hospital of Limoges Limoges 87000 France Department of Cardiology Centre Hospitalier d'Orléans Orléans 45100 France Department of Cardiology Centre Hospitalier de Chartres Le Coudray 28630 France Intensive Cardiological Care Division Louis-Pradel Hospital Hospices Civils de Lyon Bron 69500 France Department of Cardiology University Hospital of Lille Lille 59000 France Intensive Cardiac Care Unit Henri-Mondor University Hospital Créteil 94000 France Department of Cardiology Dijon University Hospital Dijon 21000 France Department of Cardiology and Vascular Diseases CHU of Rennes Rennes 35000 France Department of Cardiology Hôpital Avicenne AP–HP Bobigny 93000 France Department of Cardiology Clinical Investigation Centre (Inserm 1204) University Hospital of Poitiers Poitiers 86000 France Inserm_U1148/LVTS hôpital Bichat université Paris-Cité AP–HP Paris 75877 France Unité de recherche clinique hôpital Fernand-Widal AP–HP Paris 75010 France
Background: Although recreational drug use is a strong risk factor for acute cardiovascular events, systematic testing is currently not performed in patients admitted to intensive cardiac care units, with a risk of un... 详细信息
来源: 评论
Automating airborne pollen classification: Identifying and interpreting hard samples for classifiers
收藏 引用
Heliyon 2025年 第2期11卷 e41656页
作者: Milling, Manuel Rampp, Simon D.N. Triantafyllopoulos, Andreas Plaza, Maria P. Brunner, Jens O. Traidl-Hoffmann, Claudia Schuller, Björn W. Damialis, Athanasios CHI – Chair of Health Informatics MRI Technical University of Munich Munich Germany MCML–Munich Center for Machine Learning Germany EIHW – Chair of Embedded Intelligence for Health Care & Wellbeing University of Augsburg Augsburg Germany Institute of Environmental Medicine and Integrative Health Faculty of Medicine University Clinic of Augsburg & University of Augsburg Augsburg Germany Institute of Environmental Medicine Helmholtz Center Munich German Research Center for Environmental Health Germany Faculty of Business and Economics and Faculty of Medicine University of Augsburg Augsburg Germany Department of Technology Management and Economics Technical University of Denmark Denmark Next Generation Technology Region Zealand Denmark Christine Kühne Center for Allergy Research and Education Davos Switzerland MDSI–Munich Data Science Institute Germany GLAM–the Group on Language Audio & Music Imperial College London London United Kingdom Terrestrial Ecology and Climate Change Department of Ecology School of Biology Faculty of Sciences Aristotle University of Thessaloniki Thessaloniki Greece
Deep-learning-based classification of pollen grains has been a major driver towards automatic monitoring of airborne pollen. Yet, despite an abundance of available datasets, little effort has been spent to investigate... 详细信息
来源: 评论
Explaining bayesian neural networks
arXiv
收藏 引用
arXiv 2021年
作者: Bykov, Kirill Höhne, Marina M.-C. Creosteanu, Adelaida Müller, Klaus-Robert Machine Learning Group Technische Universität Berlin Marchstr. 23 Berlin10587 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg 4 Saarbrücken66123 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Technische Universität Berlin Berlin Germany Google Research Brain team Berlin Germany Department of Computer Science TU Kaiserslautern Germany Heidelberg Germany Institute of Pathology Charite – Universitätsmedizin Berlin Berlin Germany Aignostics Berlin Germany RIKEN AIP 1-4-1 Nihonbashi Chuo-ku Tokyo Japan
—To make advanced learning machines such as Deep Neural Networks (DNNs) more transparent in decision making, explainable AI (XAI) aims to provide interpretations of DNNs’ predictions. These interpretations are usual... 详细信息
来源: 评论
Sharpening the dark matter signature in gravitational waveforms. II. Numerical simulations
收藏 引用
Physical Review D 2025年 第6期111卷 063071-063071页
作者: Bradley J. Kavanagh Theophanes K. Karydas Gianfranco Bertone Pierfrancesco Di Cintio Mario Pasquato Instituto de Física de Cantabria (IFCA UC-CSIC) Avenue de Los Castros s 39005 Santander Spain Gravitation Astroparticle Physics Amsterdam (GRAPPA) Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands Consiglio Nazionale delle Ricerche Istituto dei Sistemi Complessi (CNR-ISC) via Madonna del Piano 17 50022 Sesto Fiorentino (FI) Italy INAF-Osservatorio Astronomico di Arcetri Largo Enrico Fermi 5 50125 Firenze Italy INFN-Sezione di Firenze Via Giovanni Sansone 1 50022 Sesto Fiorentino Italy Département de Physique Université de Montréal 1375 Avenue Thérèse-Lavoie-Roux Montréal Canada Mila—Quebec Artificial Intelligence Institute 6666 Rue Saint-Urbain Montréal Canada Ciela—Montréal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Dipartimento di Fisica e Astronomia Università di Padova Vicolo dell’Osservatorio 5 Padova Italy Istituto Nazionale di Fisica Nucleare Padova Via Marzolo 8 Padova Italy
Future gravitational wave observatories can probe dark matter by detecting the dephasing in the waveform of binary black hole mergers induced by dark matter overdensities. Such a detection hinges on the accurate model...
来源: 评论
A study on the uncertainty of convolutional layers in deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University ShenzhenGuangdong518060 China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
This paper shows a Min-Max property existing in the connection weights of the convolutional layers in a neural network structure, i.e., the LeNet. Specifically, the Min-Max property means that, during the back propaga... 详细信息
来源: 评论
Synchronized sensor insoles for clinical gait analysis in home-monitoring applications
收藏 引用
Current Directions in Biomedical Engineering 2018年 第1期4卷 433-437页
作者: Roth, Nils Martindale, Christine F. Gaßner, Heiko Kohl, Zacharias Klucken, Jochen Eskofer, Bjoern M. Machine Learning and Data Analytics Lab. Department of Computer Science Friedrich-Alexander-University Erlangen-Nürnberg (FAU) Erlangen Germany Department of Molecular Neurology University Hospital Erlangen Germany
Wearable sensor systems are of increasing interest in clinical gait analysis. However, little information about gait dynamics of patients under free living conditions is available, due to the challenges of integrating... 详细信息
来源: 评论
Incorporating Hidden Layer representation into Adversarial Attacks and Defences
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
In this paper, we propose a defence strategy to improves adversarial robustness incorporating hidden layer representation. The key of this defence strategy aims to compress or filter input’s information including adv... 详细信息
来源: 评论
Reducing Training data Needs with Minimal Multilevel machine learning (M3L)
arXiv
收藏 引用
arXiv 2023年
作者: Heinen, Stefan Khan, Danish von Rudorff, Guido Falk Karandashev, Konstantin Arrieta, Daniel Jose Arismendi Price, Alastair J.A. Nandi, Surajit Bhowmik, Arghya Hermansson, Kersti Anatole von Lilienfeld, O. Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Department of Chemistry University of Toronto St. George Campus TorontoON Canada University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Heinrich-Plett-Straße 40 Kassel34132 Germany University of Vienna Faculty of Physics Kolingasse 14-16 WienAT-1090 Austria Department of Chemistry-Ångström Laboratory Uppsala University Box 538 UppsalaSE-75121 Sweden Acceleration Consortium University of Toronto 80 St George St TorontoONM5S 3H6 Canada Departments of Chemistry University of Toronto St. George Campus TorontoON Canada Department of Energy Conversion and Storage DTU Anker Engelunds Vej Kgs. LyngbyDK-2800 Denmark Department of Materials Science and Engineering University of Toronto St. George campus TorontoON Canada Department of Physics University of Toronto St. George campus TorontoON Canada Machine Learning Group Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Berlin Germany
For many machine learning applications in science, data acquisition, not training, is the bottleneck even when avoiding experiments and relying on computation and simulation. Correspondingly, and in order to reduce co... 详细信息
来源: 评论
Ranking-based convolutional neural network models for peptide-MHC binding prediction
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Ziqi Min, Martin Renqiang Ning, Xia Computer Science and Engineering Department Ohio State University ColumbusOH United States Machine Learning Department NEC Labs America PrincetonNJ United States Biomedical Informatics Department Ohio State University ColumbusOH United States Translational Data Analytics Institute Ohio State University ColumbusOH United States
T-cell receptors can recognize foreign peptides bound to major histocompatibility complex (MHC) class-I proteins, and thus trigger the adaptive immune response. Therefore, identifying peptides that can bind to MHC cla... 详细信息
来源: 评论
Trend filtering - II. Denoising astronomical signals with varying degrees of smoothness
arXiv
收藏 引用
arXiv 2020年
作者: Politsch, Collin A. Cisewski-Kehe, Jessi Croft, Rupert A.C. Wasserman, Larry Department of Statistics & Data Science Carnegie Mellon University PittsburghPA15213 United States Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States McWilliams Center for Cosmology Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science Yale University New HavenCT06520 United States Department of Physics Carnegie Mellon University PittsburghPA15213 United States School of Physics University of Melbourne VIC3010 Australia
Trend filtering-first introduced into the astronomical literature in Paper I of this series-is a state-of-the-art statistical tool for denoising one-dimensional signals that possess varying degrees of smoothness. In t... 详细信息
来源: 评论