咨询与建议

限定检索结果

文献类型

  • 690 篇 期刊文献
  • 532 篇 会议
  • 3 册 图书

馆藏范围

  • 1,225 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 741 篇 工学
    • 511 篇 计算机科学与技术...
    • 439 篇 软件工程
    • 167 篇 生物工程
    • 129 篇 信息与通信工程
    • 102 篇 控制科学与工程
    • 100 篇 生物医学工程(可授...
    • 69 篇 光学工程
    • 62 篇 电气工程
    • 49 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 29 篇 机械工程
    • 27 篇 仪器科学与技术
    • 24 篇 建筑学
    • 24 篇 土木工程
  • 555 篇 理学
    • 314 篇 数学
    • 176 篇 生物学
    • 166 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 66 篇 化学
    • 63 篇 系统科学
  • 179 篇 管理学
    • 92 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 55 篇 工商管理
  • 88 篇 医学
    • 72 篇 临床医学
    • 62 篇 基础医学(可授医学...
    • 37 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 29 篇 法学
    • 27 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 20 篇 农学
  • 12 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 73 篇 machine learning
  • 63 篇 accuracy
  • 61 篇 deep learning
  • 36 篇 training
  • 32 篇 convolutional ne...
  • 29 篇 real-time system...
  • 26 篇 predictive model...
  • 26 篇 feature extracti...
  • 22 篇 reviews
  • 22 篇 decision making
  • 21 篇 reinforcement le...
  • 21 篇 image segmentati...
  • 21 篇 artificial intel...
  • 20 篇 medical services
  • 20 篇 diseases
  • 20 篇 machine learning...
  • 20 篇 forecasting
  • 17 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 data models

机构

  • 59 篇 machine learning...
  • 46 篇 department of st...
  • 40 篇 center for data ...
  • 37 篇 center for machi...
  • 33 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 17 篇 munich center fo...
  • 17 篇 machine learning...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich data scie...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...

作者

  • 68 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 15 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 dong bin

语言

  • 1,020 篇 英文
  • 202 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science"
1225 条 记 录,以下是1101-1110 订阅
排序:
Predictive inference with the jackknife+
arXiv
收藏 引用
arXiv 2019年
作者: Barber, Rina Foygel Candés, Emmanuel J. Ramdas, Aaditya Tibshirani, Ryan J. Department of Statistics University of Chicago Departments of Statistics and Mathematics Stanford University Department of Statistics and Data Science Carnegie Mellon University Machine Learning Department Carnegie Mellon University
This paper introduces the jackknife+, which is a novel method for constructing predictive confidence intervals. Whereas the jackknife outputs an interval centered at the predicted response of a test point, with the wi... 详细信息
来源: 评论
The Omniglot challenge: A 3-year progress report
arXiv
收藏 引用
arXiv 2019年
作者: Lake, Brenden M. Salakhutdinov, Ruslan Tenenbaum, Joshua B. Department of Psychology Center for Data Science New York University Machine Learning Department Carnegie Mellon University Department of Brain and Cognitive Sciences Center for Brains Minds and Machines MIT
Three years ago, we released the Omniglot dataset for one-shot learning, along with five challenge tasks and a computational model that addresses these tasks. The model was not meant to be the final word on Omniglot;w... 详细信息
来源: 评论
Efficient Algorithms for Set-Valued Prediction in Multi-Class Classification
arXiv
收藏 引用
arXiv 2019年
作者: Mortier, Thomas Wydmuch, Marek Dembczyński, Krzysztof Hüllermeier, Eyke Waegeman, Willem Department of Data Analysis and Mathematical Modelling Ghent University Belgium Institute of Computing Science Poznań University of Technology Poland Intelligent Systems and Machine Learning Universität Paderborn Germany
In cases of uncertainty, a multi-class classifier preferably returns a set of candidate classes instead of predicting a single class label with little guarantee. More precisely, the classifier should strive for an opt... 详细信息
来源: 评论
The Outcome of the 2022 Landslide4Sense Competition: Advanced Landslide Detection from Multi-Source Satellite Imagery
arXiv
收藏 引用
arXiv 2022年
作者: Ghorbanzadeh, Omid Xu, Yonghao Zhao, Hengwei Wang, Junjue Zhong, Yanfei Zhao, Dong Zang, Qi Wang, Shuang Zhang, Fahong Shi, Yilei Zhu, Xiao Xiang Bai, Lin Li, Weile Peng, Weihang Ghamisi, Pedram Landstraβer Hauptstraβe 5 Vienna1030 Austria The State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University 430074 China The School of Artificial Intelligence Xidian University Xian710071 China The Data Science in Earth Observation Technical University of Munich Munich80333 Germany Remote Sensing Technology Technical University of Munich Munich80333 Germany Wessling82234 Germany Munich80333 Germany The State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Chengdu University of Technology No.1 East Third Road Erxianqiao Chenghua District Chengdu610059 China Landstraβer Hauptstraβe 5 Vienna1030 Austria Helmholtz-Zentrum Dresden-Rossendorf Helmholtz Institute Freiberg for Resource Technology Machine Learning Group Chemnitzer Str. 40 Freiberg09599 Germany
The scientific outcomes of the 2022 Landslide4Sense (L4S) competition organized by the Institute of Advanced Research in Artificial Intelligence (IARAI) are presented here. The objective of the competition is to autom... 详细信息
来源: 评论
Graph convolutional networks: Analysis, improvements and results
arXiv
收藏 引用
arXiv 2019年
作者: Ullah, Ihsan Manzo, Mario Shah, Mitul Madden, Michael Information Technology Services University of Naples"L'Orientale" Naples80121 Italy Data Mining and Machine Learning Group School of Computer Science National University of Ireland Galway Galway Ireland
In the current era of neural networks and big data, higher dimensional data is processed for automation of different application areas. Graphs represent a complex data organization in which dependencies between more t... 详细信息
来源: 评论
Lessons Learned from Assessing Trustworthy AI in Practice
收藏 引用
Digital Society 2023年 第3期2卷 1-25页
作者: Vetter, Dennis Amann, Julia Bruneault, Frédérick Coffee, Megan Düdder, Boris Gallucci, Alessio Gilbert, Thomas Krendl Hagendorff, Thilo van Halem, Irmhild Hickman, Eleanore Hildt, Elisabeth Holm, Sune Kararigas, Georgios Kringen, Pedro Madai, Vince I. Wiinblad Mathez, Emilie Tithi, Jesmin Jahan Westerlund, Magnus Wurth, Renee Zicari, Roberto V. Computational Vision and Artificial Intelligence Lab Goethe University Frankfurt Frankfurt Am Main Germany Z-Inspection® Initiative Venice Italy Health Ethics and Policy Lab ETH Zurich Zurich Switzerland Strategy and Innovation Careum Foundation Zurich Switzerland Philosophie Departement Collège André-Laurendeau Montréal Canada École Des Médias Université du Québec À Montréal Montréal Canada Department of Medicine Division of Infectious Diseases and Immunology New York University Grossman School of Medicine New York City USA Department of Computer Science University of Copenhagen Copenhagen Denmark Digital Life Initiative Cornell Tech New York City USA Cluster of Excellence “Machine Learning: New Perspectives for Science” University of Tuebingen Tuebingen Germany School of Law University of Bristol Bristol UK Center for the Study of Ethics in the Professions Illinois Institute of Technology Chicago USA Department of Business Management and Analytics Arcada University of Applied Sciences Helsinki Finland Department of Food & Resource Economics University of Copenhagen Copenhagen Denmark Department of Physiology Faculty of Medicine University of Iceland Reykjavik Iceland QUEST Centre for Responsible Research Berlin Institute of Health Charité Universitätsmedizin Berlin Berlin Germany Faculty of Computing Engineering and the Built Environment School of Computing and Digital Technology Birmingham City University Birmingham UK Parallel Computing Labs Intel Santa Clara USA School of Economics Innovation and Technology Kristiania University College Oslo Norway Data Science Graduate School Seoul National University Seoul South Korea
Building artificial intelligence (AI) systems that adhere to ethical standards is a complex problem. Even though a multitude of guidelines for the design and development of such trustworthy AI systems exist, these gui...
来源: 评论
Depth selection for deep ReLU nets in feature extraction and generalization
arXiv
收藏 引用
arXiv 2020年
作者: Han, Zhi Yu, Siquan Lin, Shao-Bo Zhou, Ding-Xuan State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang China School of Information Science and Engineering Northeastern University Shenyang China Center of Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'an China School of Data Science Department of Mathematics City University of Hong Kong Hong Kong
Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature engineering techniques by taking advantage of human ingenuit... 详细信息
来源: 评论
The state-of-the-art in Cardiac MRI Reconstruction: Results of the CMRxRecon Challenge in MICCAI 2023
arXiv
收藏 引用
arXiv 2024年
作者: Lyu, Jun Qin, Chen Wang, Shuo Wang, Fanwen Li, Yan Wang, Zi Guo, Kunyuan Ouyang, Cheng Tänzer, Michael Liu, Meng Sun, Longyu Sun, Mengting Li, Qin Shi, Zhang Hua, Sha Li, Hao Chen, Zhensen Zhang, Zhenlin Xin, Bingyu Metaxas, Dimitris N. Yiasemis, George Teuwen, Jonas Zhang, Liping Chen, Weitian Pang, Yanwei Liu, Xiaohan Razumov, Artem Dylov, Dmitry V. Dou, Quan Yan, Kang Xue, Yuyang Du, Yuning Dietlmeier, Julia Garcia-Cabrera, Carles Hemidi, Ziad Al-Haj Vogt, Nora Xu, Ziqiang Zhang, Yajing Chu, Ying-Hua Chen, Weibo Bai, Wenjia Zhuang, Xiahai Qin, Jing Wu, Lianmin Yang, Guang Qu, Xiaobo Wang, He Wang, Chengyan Psychiatry Neuroimaging Laboratory Brigham and Women’s Hospital Harvard Medical School 399 Revolution Drive BostonMA02215 United States Department of Electrical and Electronic Engineering & I-X Imperial College London United Kingdom Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai China Department of Bioengineering & I-X Imperial College London LondonW12 7SL United Kingdom Cardiovascular Magnetic Resonance Unit Royal Brompton Hospital Guy’s and St Thomas’ NHS Foundation Trust LondonSW3 6NP United Kingdom Department of Radiology Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China Department of Electronic Science Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance National Institute for Data Science in Health and Medicine Institute of Artificial Intelligence Xiamen University Xiamen361102 China Department of Computing Department of Brain Sciences Imperial College London LondonSW7 2AZ United Kingdom Human Phenome Institute Fudan University 825 Zhangheng Road Pudong New District Shanghai201203 China Department of Radiology Zhongshan Hospital Fudan University Shanghai China Department of Cardiovascular Medicine Ruijin Hospital Lu Wan Branch Shanghai Jiao Tong University School of Medicine Shanghai China Institute of Science and Technology for Brain-Inspired Intelligence Fudan University Shanghai200433 China Department of Computer Science Rutgers University PiscatawayNJ08854 United States AI for Oncology Netherlands Cancer Institute Plesmanlaan 121 Amsterdam1066 CX Netherlands Department of Imaging and Interventional Radiology The Chinese University of Hong Kong Hong Kong TJK-BIIT Lab School of Electrical and Information Engineering Tianjin University Tianjin300072 China Skolkovo Institute Of Science And Technology Center for Artificial Intelligence Technology 30/1 Bolshoy blvd. Moscow121205 Russia Department of Biomedical Engineering University of Virginia
Cardiac magnetic resonance imaging (MRI) provides detailed and quantitative evaluation of the heart’s structure, function, and tissue characteristics with high-resolution spatial-temporal imaging. However, its slow i... 详细信息
来源: 评论
Roaming leads to amino acid photodamage: A deep learning study of tyrosine
arXiv
收藏 引用
arXiv 2021年
作者: Westermayr, Julia Gastegger, Michael Vörös, Dora Panzenboeck, Lisa Joerg, Florian González, Leticia Marquetand, Philipp University of Warwick Department of Chemistry Gibbet Hill Rd CoventryCV4 7AL United Kingdom Technical University of Berlin Machine Learning Group Berlin10587 Germany University of Vienna Faculty of Chemistry Institute of Theoretical Chemistry Währinger Str. 17 Vienna1090 Austria University of Vienna Vienna Research Platform on Accelerating Photoreaction Discovery Währinger Str. 17 Vienna1090 Austria University of Vienna Faculty of Chemistry Data Science @ Uni Vienna Währinger Str. 29 Vienna1090 Austria
Although the amino acid tyrosine is among the main building blocks of life, its photochemistry is not fully understood. Traditional theoretical simulations are neither accurate enough, nor computationally efficient to... 详细信息
来源: 评论
AB0205 A NOVEL METHOD FOR PREDICTING 1-YEAR RETENTION OF ABATACEPT USING machine learning TECHNIQUES: DIRECTIONALITY AND IMPORTANCE OF PREDICTORS
收藏 引用
Annals of the Rheumatic Diseases 2021年 80卷 1127-1128页
作者: R. Alten C. Behar C. Boileau P. Merckaert E. Afari V. Vannier-Moreau S. Connolly A. Najm P.A. Juge A. Rai Y. Elbez K. Lozenski Schlosspark-Klinik University Department of Internal Medicine Rheumatology Berlin Germany Tulsy Co-founder Paris France Excelya N/A Boulogne-Billancourt France Data Revenue GmbH Machine Learning Engineering Department Berlin Germany Private Practice N/A Brunoy France Bristol Myers Squibb Medical Affairs France Rueil-Malmaison France Bristol Myers Squibb Global Drug Development Princeton United States of America University of Glasgow Institute of Infection Immunity and Inflammation College of Medical Veterinary and Life Sciences Glasgow United Kingdom Université de Paris AP-HP Hôpital Bichat Claude-Bernard Department of Rheumatology Paris France Bristol Myers Squibb Global Biometrics and Data Science Princeton United States of America Deepscover Biostatistics Puteaux France Bristol Myers Squibb Immunology and Fibrosis Princeton United States of America
Background: In the ACTION ( NCT02109666 ) study, multivariable Cox proportional hazards regression models showed that the predictors of 1-year retention to abatacept treatment were: patient global pain assessment, cou...
来源: 评论