咨询与建议

限定检索结果

文献类型

  • 690 篇 期刊文献
  • 532 篇 会议
  • 3 册 图书

馆藏范围

  • 1,225 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 741 篇 工学
    • 511 篇 计算机科学与技术...
    • 439 篇 软件工程
    • 167 篇 生物工程
    • 129 篇 信息与通信工程
    • 102 篇 控制科学与工程
    • 100 篇 生物医学工程(可授...
    • 69 篇 光学工程
    • 62 篇 电气工程
    • 49 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 29 篇 机械工程
    • 27 篇 仪器科学与技术
    • 24 篇 建筑学
    • 24 篇 土木工程
  • 555 篇 理学
    • 314 篇 数学
    • 176 篇 生物学
    • 166 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 66 篇 化学
    • 63 篇 系统科学
  • 179 篇 管理学
    • 92 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 55 篇 工商管理
  • 88 篇 医学
    • 72 篇 临床医学
    • 62 篇 基础医学(可授医学...
    • 37 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 29 篇 法学
    • 27 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 20 篇 农学
  • 12 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 73 篇 machine learning
  • 63 篇 accuracy
  • 61 篇 deep learning
  • 36 篇 training
  • 32 篇 convolutional ne...
  • 29 篇 real-time system...
  • 26 篇 predictive model...
  • 26 篇 feature extracti...
  • 22 篇 reviews
  • 22 篇 decision making
  • 21 篇 reinforcement le...
  • 21 篇 image segmentati...
  • 21 篇 artificial intel...
  • 20 篇 medical services
  • 20 篇 diseases
  • 20 篇 machine learning...
  • 20 篇 forecasting
  • 17 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 data models

机构

  • 59 篇 machine learning...
  • 46 篇 department of st...
  • 40 篇 center for data ...
  • 37 篇 center for machi...
  • 33 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 17 篇 munich center fo...
  • 17 篇 machine learning...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich data scie...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...

作者

  • 68 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 15 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 dong bin

语言

  • 1,020 篇 英文
  • 202 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science"
1225 条 记 录,以下是1111-1120 订阅
排序:
Torus graphs for multivariate phase coupling analysis
arXiv
收藏 引用
arXiv 2019年
作者: Klein, Natalie Orellana, Josue Brincat, Scott Miller, Earl K. Kass, Robert E. Department of Statistics and Data Science Carnegie Mellon University Machine Learning Department Carnegie Mellon University Center for the Neural Basis of Cognition Carnegie Mellon University University of Pittsburgh Department of Brain and Cognitive Science Massachusetts Institute of Technology
Angular measurements are often modeled as circular random variables, where there are natural circular analogues of moments, including correlation. Because a product of circles is a torus, a d-dimensional vector of cir... 详细信息
来源: 评论
Optimal Neural Summarisation for Full-Field Weak Lensing Cosmological Implicit Inference
arXiv
收藏 引用
arXiv 2024年
作者: Lanzieri, Denise Zeghal, Justine Makinen, T. Lucas Boucaud, Alexandre Starck, Jean-Luc Lanusse, François Université Paris Cité Université Paris-Saclay CEA CNRS AIM Gif-sur-YvetteF-91191 France Université Paris Cité CNRS Astroparticule et Cosmologie ParisF-75013 France Astrophysics Group Imperial College London Blackett Laboratory Prince Consort Road LondonSW7 2AZ United Kingdom Université Paris-Saclay Université Paris Cité CEA CNRS AIM Gif-sur-Yvette91191 France Sony Computer Science Laboratories - Rome Joint Initiative CREF-SONY Centro Ricerche Enrico Fermi Via Panisperna 89/A Rome00184 Italy Greece Center for Computational Astrophysics Flatiron Institute 162 5th Ave New YorkNY10010 United States Department of Physics Université de Montréal MontréalH2V 0B3 Canada Mila – Quebec Artificial Intelligence Institute MontréalH2S 3H1 Canada Ciela – Montreal Institute for Astrophysical Data Analysis and Machine Learning MontréalH2V 0B3 Canada
Context. Traditionally, weak lensing cosmological surveys have been analyzed using summary statistics that were either motivated by their analytically tractable likelihoods (e.g. power spectrum), or by their ability t... 详细信息
来源: 评论
Minimax rates of distribution estimation in wasserstein distance
arXiv
收藏 引用
arXiv 2018年
作者: Singh, Shashank Poczos, Barnabas Machine Learning Department and Department of Statistics and Data Science Carnegie Mellon University Machine Learning Department Carnegie Mellon University
The Wasserstein metric is an important measure of distance between probability distributions, with many applications in machine learning, statistics, probability theory, and data analysis. This paper provides new uppe... 详细信息
来源: 评论
A multi-objective deep reinforcement learning algorithm for spatio-temporal latency optimization in mobile IoT-enabled edge computing networks
收藏 引用
Simulation Modelling Practice and Theory 2025年 143卷
作者: Parisa Khoshvaght Amir Haider Amir Masoud Rahmani Farhad Soleimanian Gharehchopogh Ferzat Anka Jan Lansky Mehdi Hosseinzadeh Institute of Research and Development Duy Tan University Da Nang Vietnam School of Engineering & Technology Duy Tan University Da Nang Vietnam Centre for Research Impact & Outcome Chitkara University Institute of Engineering and Technology Chitkara University Rajpura 140401 Punjab India Department of AI and Robotics Sejong University Seoul 05006 Republic of Korea Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan Department of Computer Engineering Ur. C. Islamic Azad University Urmia Iran Data Science Application and Research Center (VEBIM) Fatih Sultan Mehmet Vakif University Istanbul Türkiye Department of Computer Science and Mathematics Faculty of Economic Studies University of Finance and Administration Prague Czech Republic Pattern Recognition and Machine Learning Laboratory School of Computing Gachon University Seongnam Republic of Korea
The rapid increase in Mobile Internet of Things (IoT) devices requires novel computational frameworks. These frameworks must meet strict latency and energy efficiency requirements in Edge and Mobile Edge Computing (ME... 详细信息
来源: 评论
machine learning Force Fields
arXiv
收藏 引用
arXiv 2020年
作者: Unke, Oliver T. Chmiela, Stefan Sauceda, Huziel E. Gastegger, Michael Poltavsky, Igor Schütt, Kristof T. Tkatchenko, Alexandre Müller, Klaus-Robert Machine Learning Group Technische Universität Berlin Berlin10587 Germany Technische Universität Berlin Berlin10623 Germany BASLEARN BASF-TU joint Lab Technische Universität Berlin Berlin10587 Germany Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany
In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One o... 详细信息
来源: 评论
Epitopedia: identifying molecular mimicry between pathogens and known immune epitopes
收藏 引用
ImmunoInformatics 2023年 9卷
作者: Christian A Balbin Janelle Nunez-Castilla Vitalii Stebliankin Prabin Baral Masrur Sobhan Trevor Cickovski Ananda Mohan Mondal Giri Narasimhan Prem Chapagain Kalai Mathee Jessica Siltberg-Liberles Department of Biological Sciences College of Arts Science and Education Florida International University Miami United States Bioinformatics Research Group (BioRG) Knight Foundation School of Computing and Information Sciences Florida International University Miami United States Department of Physics College of Arts Science and Education Florida International University Miami United States Machine Learning and Data Analytics Group (MLDAG) Knight Foundation School of Computing and Information Sciences Florida International University Miami United States Biomolecular Sciences Institute Florida International University Miami United States Department of Human and Molecular Genetics Herbert Wertheim College of Medicine Florida International University Miami United States
Upon infection, foreign antigenic proteins stimulate the host's immune system to produce antibodies targeting the pathogen. These antibodies bind to regions on the antigen called epitopes. Structural similarity (m...
来源: 评论
The limits of distribution-free conditional predictive inference
arXiv
收藏 引用
arXiv 2019年
作者: Barber, Rina Foygel Candès, Emmanuel J. Ramdas, Aaditya Tibshirani, Ryan J. Department of Statistics University of Chicago United States Departments of Statistics and Mathematics Stanford University United States Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We consider the problem of distribution-free predictive inference, with the goal of producing predictive coverage guarantees that hold conditionally rather than marginally. Existing methods such as conformal predictio... 详细信息
来源: 评论
Analyzing the Structure of Attention in a Transformer Language Model
arXiv
收藏 引用
arXiv 2019年
作者: Vig, Jesse Belinkov, Yonatan Palo Alto Research Center Machine Learning and Data Science Group Interaction and Analytics Lab Palo AltoCA United States Harvard John A. Paulson School of Engineering and Applied Sciences MIT Computer Science and Artificial Intelligence Laboratory CambridgeMA United States
The Transformer is a fully attention-based alternative to recurrent networks that has achieved state-of-the-art results across a range of NLP tasks. In this paper, we analyze the structure of attention in a Transforme... 详细信息
来源: 评论
Incremental intervention effects in studies with dropout and many timepoints
arXiv
收藏 引用
arXiv 2019年
作者: Kim, Kwangho Kennedy, Edward H. Naimi, Ashley I. Department of Statistics & Data Science Machine Learning Department Carnegie Mellon University 5000 Forbes Ave PittsburghPA15213 United States Department of Statistics & Data Science Carnegie Mellon University 5000 Forbes Ave PittsburghPA15213 United States Department of Epidemiology Rollins School of Public Health Emory University AtlantaGA United States
Modern longitudinal studies collect feature data at many timepoints, often of the same order of sample size. Such studies are typically affected by dropout and positivity violations. We tackle these problems by genera...
来源: 评论
L1 Trend Filtering: A Modern Statistical Tool for Time-Domain Astronomy and Astronomical Spectroscopy
arXiv
收藏 引用
arXiv 2019年
作者: Politsch, Collin A. Cisewski-Kehe, Jessi Croft, Rupert A.C. Wasserman, Larry Department of Statistics & Data Science Carnegie Mellon University PittsburghPA15213 Machine Learning Department Carnegie Mellon University PittsburghPA15213 Department of Statistics and Data Science Yale University New HavenCT06520 Department of Physics Carnegie Mellon University PittsburghPA15213 McWilliams Center for Cosmology Carnegie Mellon University PittsburghPA15213
The problem of estimating a one-dimensional signal possessing mixed degrees of smoothness is ubiquitous in time-domain astronomy and astronomical spectroscopy. For example, in the time domain, an astronomical object m... 详细信息
来源: 评论