咨询与建议

限定检索结果

文献类型

  • 690 篇 期刊文献
  • 532 篇 会议
  • 3 册 图书

馆藏范围

  • 1,225 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 741 篇 工学
    • 511 篇 计算机科学与技术...
    • 439 篇 软件工程
    • 167 篇 生物工程
    • 129 篇 信息与通信工程
    • 102 篇 控制科学与工程
    • 100 篇 生物医学工程(可授...
    • 69 篇 光学工程
    • 62 篇 电气工程
    • 49 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 29 篇 机械工程
    • 27 篇 仪器科学与技术
    • 24 篇 建筑学
    • 24 篇 土木工程
  • 555 篇 理学
    • 314 篇 数学
    • 176 篇 生物学
    • 166 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 66 篇 化学
    • 63 篇 系统科学
  • 179 篇 管理学
    • 92 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 55 篇 工商管理
  • 88 篇 医学
    • 72 篇 临床医学
    • 62 篇 基础医学(可授医学...
    • 37 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 29 篇 法学
    • 27 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 20 篇 农学
  • 12 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 73 篇 machine learning
  • 63 篇 accuracy
  • 61 篇 deep learning
  • 36 篇 training
  • 32 篇 convolutional ne...
  • 29 篇 real-time system...
  • 26 篇 predictive model...
  • 26 篇 feature extracti...
  • 22 篇 reviews
  • 22 篇 decision making
  • 21 篇 reinforcement le...
  • 21 篇 image segmentati...
  • 21 篇 artificial intel...
  • 20 篇 medical services
  • 20 篇 diseases
  • 20 篇 machine learning...
  • 20 篇 forecasting
  • 17 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 data models

机构

  • 59 篇 machine learning...
  • 46 篇 department of st...
  • 40 篇 center for data ...
  • 37 篇 center for machi...
  • 33 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 17 篇 munich center fo...
  • 17 篇 machine learning...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich data scie...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...

作者

  • 68 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 15 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 dong bin

语言

  • 1,020 篇 英文
  • 202 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science"
1225 条 记 录,以下是1131-1140 订阅
排序:
Generative Artificial Intelligence in Healthcare: Ethical Considerations and Assessment Checklist
arXiv
收藏 引用
arXiv 2023年
作者: Ning, Yilin Teixayavong, Salinelat Shang, Yuqing Savulescu, Julian Nagaraj, Vaishaanth Miao, Di Mertens, Mayli Wei Ting, Daniel Shu Ling Ong, Jasmine Chiat Liu, Mingxuan Cao, Jiuwen Dunn, Michael Vaughan, Roger Hock Ong, Marcus Eng Sung, Joseph Jao-Yiu Topol, Eric J. Liu, Nan Centre for Quantitative Medicine Duke-NUS Medical School Singapore Singapore Centre for Biomedical Ethics National University of Singapore Singapore Singapore Wellcome Centre for Ethics and Humanities University of Oxford Oxford United Kingdom School of Medicine Imperial College London London United Kingdom Centre for Ethics Department of Philosophy University of Antwerp Antwerp Belgium Antwerp Center on Responsible AI University of Antwerp Antwerp Belgium Singapore Eye Research Institute Singapore National Eye Centre Singapore Singapore SingHealth AI Office Singapore Health Services Singapore Singapore Division of Pharmacy Singapore General Hospital Singapore Singapore Machine Learning and I-Health International Cooperation Base of Zhejiang Province Hangzhou Dianzi University Zhejiang China Artificial Intelligence Institute Hangzhou Dianzi University Zhejiang China Programme in Health Services and Systems Research Duke-NUS Medical School Singapore Singapore Department of Emergency Medicine Singapore General Hospital Singapore Singapore Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore State Key Laboratory of Digestive Disease The Chinese University of Hong Kong Hong Kong Scripps Research Translational Institute Scripps Research La Jolla CA United States Institute of Data Science National University of Singapore Singapore Singapore Centre for Quantitative Medicine Duke-NUS Medical School 8 College Road Singapore169857 Singapore
The widespread use of ChatGPT and other emerging technology powered by generative artificial intelligence (GenAI) has drawn much attention to potential ethical issues, especially in high-stakes applications such as he... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论
Sketch-based Medical Image Retrieval
arXiv
收藏 引用
arXiv 2023年
作者: Kobayashi, Kazuma Gu, Lin Hataya, Ryuichiro Mizuno, Takaaki Miyake, Mototaka Watanabe, Hirokazu Takahashi, Masamichi Takamizawa, Yasuyuki Yoshida, Yukihiro Nakamura, Satoshi Kouno, Nobuji Bolatkan, Amina Kurose, Yusuke Harada, Tatsuya Hamamoto, Ryuji Division of Medical AI Research and Development National Cancer Center Research Institute 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Cancer Translational Research Team RIKEN Center for Advanced Intelligence Project 1-4-1 Nihonbashi Chuo-ku Tokyo103-0027 Japan Machine Intelligence for Medical Engineering Team RIKEN Center for Advanced Intelligence Project 1-4-1 Nihonbashi Chuo-ku Tokyo103-0027 Japan Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo153-8904 Japan Medical Data Deep Learning Team Advanced Data Science Project RIKEN Information R&D and Strategy Headquarters 1-4-1 Nihonbashi Chuo-ku Tokyo103-0027 Japan Department of Experimental Therapeutics National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Department of Diagnostic Radiology National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Department of Neurosurgery and Neuro-Oncology National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Department of Colorectal Surgery National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Department of Thoracic Surgery National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Radiation Safety and Quality Assurance Division National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Division of Research and Development for Boron Neutron Capture Therapy National Cancer Center Exploratory Oncology Research & Clinical Trial Center 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Medical Physics Laboratory Division of Health Science Graduate School of Medicine Osaka University Yamadaoka 1-7 Osaka Suita-shi565-0871 Japan Department of Surgery Kyoto University Graduate School of Medicine 54 Shogoin Kawahara-cho Sakyo-ku Kyoto606-8507 Japan
The amount of medical images stored in hospitals is increasing faster than ever;however, utilizing the accumulated medical images has been limited. This is because existing content-based medical image retrieval (CBMIR... 详细信息
来源: 评论
Field-level simulation-based inference of galaxy clustering with convolutional neural networks
收藏 引用
Physical Review D 2024年 第8期109卷 083536-083536页
作者: Pablo Lemos Liam Parker ChangHoon Hahn Shirley Ho Michael Eickenberg Jiamin Hou Elena Massara Chirag Modi Azadeh Moradinezhad Dizgah Bruno Régaldo-Saint Blancard David Spergel Department of Physics Université de Montréal Montréal 1375 Avenue Thérèse-Lavoie-Roux Montréal QC H2V 0B3 Canada Mila—Quebec Artificial Intelligence Institute Montréal 6666 Rue Saint-Urbain Montréal QC H2S 3H1 Canada Ciela—Montreal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New York New York 10010 USA Department of Physics Princeton University Princeton New Jersey 08544 USA Center for Cosmology and Particle Physics Department of Physics New York University New York New York 10003 USA Department of Physics Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA Center for Computational Mathematics Flatiron Institute 162 5th Avenue New York New York 10010 USA Department of Astronomy University of Florida 211 Bryant Space Science Center Gainesville Florida 32611 USA Max-Planck-Institut für Extraterrestrische Physik Postfach 1312 Giessenbachstrasse 1 85748 Garching bei München Germany Waterloo Centre for Astrophysics University of Waterloo 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada Department of Physics and Astronomy University of Waterloo 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada Département de Physique Théorique Université de Genève 24 quai Ernest Ansermet 1211 Genève 4 Switzerland
We present the first simulation-based inference (SBI) of cosmological parameters from field-level analysis of galaxy clustering. Standard galaxy clustering analyses rely on analyzing summary statistics, such as the po... 详细信息
来源: 评论
Time-uniform, nonparametric, nonasymptotic confidence sequences
arXiv
收藏 引用
arXiv 2018年
作者: Howard, Steven R. Ramdas, Aaditya McAuliffe, Jon Sekhon, Jasjeet Departments of Statistics Political Science UC Berkeley Departments of Statistics and Data Science United States Machine Learning Carnegie Mellon The Voleon Group United States
A confidence sequence is a sequence of confidence intervals that is uniformly valid over an unbounded time horizon. Our work develops confidence sequences whose widths go to zero, with nonasymptotic coverage guarantee... 详细信息
来源: 评论
Local and Global Information Preserved Network Embedding
Local and Global Information Preserved Network Embedding
收藏 引用
International Conference on Advances in Social Network Analysis and Mining, ASONAM
作者: Yao Ma Suhang Wang Jiliang Tang Data Science and Engineering Lab Michigan State University East Lansing MI USA Data Mining and Machine Learning Lab Arizona State University Tempe AZ USA
Networks such as social networks, airplane networks, and citation networks are ubiquitous. To apply advanced machine learning algorithms to network data, low-dimensional and continuous representations are desired. To ... 详细信息
来源: 评论
Feature extraction for hyperspectral imagery: The evolution from shallow to deep
arXiv
收藏 引用
arXiv 2020年
作者: Rasti, Behnood Hong, Danfeng Hang, Renlong Ghamisi, Pedram Kang, Xudong Chanussot, Jocelyn Benediktsson, Jon Atli Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany Univ. Grenoble Alpes CNRS Grenoble INP GIPSAlab Grenoble38000 France Jiangsu Key Laboratory of Big Data Analysis Technology School of Automation Nanjing University of Information Science and Technology Nanjing210044 China Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany College of Electrical and Information Engineering Hunan University Changsha410082 China Key Laboratory of Visual Perception and Artificial Intelligence of Hunan Province Changsha410082 China Univ. Grenoble Alpes Inria CNRS Grenoble INP LJK GrenobleF-38000 France Faculty of Electrical and Computer Engineering University of Iceland Reykjavik101 Iceland Faculty of Electrical and Computer Engineering University of Iceland Reykjavik107 Iceland
The final version of the paper can be found in IEEE Geoscience and Remote Sensing Magazine. Hyperspectral images provide detailed spectral information through hundreds of (narrow) spectral channels (also known as dime... 详细信息
来源: 评论
Optimal crowd navigation via spatio-temporal multidimensional collective data analysis
收藏 引用
NTT Technical Review 2017年 第9期15卷 1-7页
作者: Naya, Futoshi Miyamoto, Masaru Ueda, Naonori Innovative Communication Laboratory NTT Communication Science Laboratories Japan Service Innovation Laboratory NTT Service Evolution Laboratories Japan Machine Learning and Data Science Center NTT Communication Science Laboratories Japan
We introduce technology for predicting the risk of congestion in the near future from real-time observational data of people or automobile flows and for automatically deriving an optimal crowd navigation plan online t... 详细信息
来源: 评论
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
Think-aloud interviews: A tool for exploring student statistical reasoning
arXiv
收藏 引用
arXiv 2019年
作者: Reinhart, Alex Evans, Ciaran Luby, Amanda Orellana, Josue Meyer, Mikaela Wieczorek, Jerzy Elliott, Peter Burckhardt, Philipp Nugent, Rebecca Department of Statistics & Data Science Carnegie Mellon University United States Department of Mathematics and Statistics Wake Forest University United States Department of Mathematics & Statistics Swarthmore College United States Center for the Neural Basis of Cognition Machine Learning Department Carnegie Mellon University United States Department of Statistics Colby College United States
Think-aloud interviews have been a valuable but underused tool in statistics education research. Think-alouds, in which students narrate their reasoning in real time while solving problems, differ in important ways fr... 详细信息
来源: 评论