咨询与建议

限定检索结果

文献类型

  • 690 篇 期刊文献
  • 532 篇 会议
  • 3 册 图书

馆藏范围

  • 1,225 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 741 篇 工学
    • 511 篇 计算机科学与技术...
    • 439 篇 软件工程
    • 167 篇 生物工程
    • 129 篇 信息与通信工程
    • 102 篇 控制科学与工程
    • 100 篇 生物医学工程(可授...
    • 69 篇 光学工程
    • 62 篇 电气工程
    • 49 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 29 篇 机械工程
    • 27 篇 仪器科学与技术
    • 24 篇 建筑学
    • 24 篇 土木工程
  • 555 篇 理学
    • 314 篇 数学
    • 176 篇 生物学
    • 166 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 66 篇 化学
    • 63 篇 系统科学
  • 179 篇 管理学
    • 92 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 55 篇 工商管理
  • 88 篇 医学
    • 72 篇 临床医学
    • 62 篇 基础医学(可授医学...
    • 37 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 29 篇 法学
    • 27 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 20 篇 农学
  • 12 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 73 篇 machine learning
  • 63 篇 accuracy
  • 61 篇 deep learning
  • 36 篇 training
  • 32 篇 convolutional ne...
  • 29 篇 real-time system...
  • 26 篇 predictive model...
  • 26 篇 feature extracti...
  • 22 篇 reviews
  • 22 篇 decision making
  • 21 篇 reinforcement le...
  • 21 篇 image segmentati...
  • 21 篇 artificial intel...
  • 20 篇 medical services
  • 20 篇 diseases
  • 20 篇 machine learning...
  • 20 篇 forecasting
  • 17 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 data models

机构

  • 59 篇 machine learning...
  • 46 篇 department of st...
  • 40 篇 center for data ...
  • 37 篇 center for machi...
  • 33 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 17 篇 munich center fo...
  • 17 篇 machine learning...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich data scie...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...

作者

  • 68 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 15 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 dong bin

语言

  • 1,020 篇 英文
  • 202 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science"
1225 条 记 录,以下是1151-1160 订阅
排序:
People flow prediction technology for crowd navigation
收藏 引用
NTT Technical Review 2018年 第8期16卷 47-52页
作者: Sato, Daisuke Shiohara, Hisako Miyamoto, Masaru Ueda, Naonori Proactive Navigation Project NTT Service Evolution Laboratories Japan Service Innovation Laboratory NTT Service Evolution Laboratories Japan Ueda Research Laboratory Japan Machine Learning and Data Science Center NTT Communication Science Laboratories Japan
We are investigating the use of incomplete observation data in order to predict the large-scale flow of people for major events such as the Olympic Games and to derive guidance measures in advance to prevent the occur... 详细信息
来源: 评论
SimBIG: Field-level Simulation-Based Inference of Galaxy Clustering
arXiv
收藏 引用
arXiv 2023年
作者: Lemos, Pablo Parker, Liam Hahn, ChangHoon Ho, Shirley Eickenberg, Michael Hou, Jiamin Massara, Elena Modi, Chirag Dizgah, Azadeh Moradinezhad Blancard, Bruno Régaldo-Saint Spergel, David Department of Physics Université de Montréal 1375 Avenue Thérèse-Lavoie-Roux MontréalQCH2V 0B3 Canada Mila - Quebec Artificial Intelligence Institute 6666 Rue Saint-Urbain MontréalQCH2S 3H1 Canada Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Department of Physics Princeton University PrincetonNJ08544 United States Center for Cosmology and Particle Physics Department of Physics New York University New YorkNY10003 United States Department of Physics Carnegie Mellon University PittsburghPA15213 United States Center for Computational Mathematics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Department of Astronomy University of Florida 211 Bryant Space Science Center GainesvilleFL32611 United States Max-Planck-Institut für Extraterrestrische Physik Postfach 1312 Giessenbachstrasse 1 Garching bei München85748 Germany Waterloo Centre for Astrophysics University of Waterloo 200 University Ave W WaterlooONN2L 3G1 Canada Department of Physics and Astronomy University of Waterloo 200 University Ave W WaterlooONN2L 3G1 Canada Département de Physique Théorique Université de Genève 24 quai Ernest Ansermet Genève 41211 Switzerland
We present the first simulation-based inference (SBI) of cosmological parameters from field-level analysis of galaxy clustering. Standard galaxy clustering analyses rely on analyzing summary statistics, such as the po... 详细信息
来源: 评论
Time series featurization via topological data analysis
arXiv
收藏 引用
arXiv 2018年
作者: Kim, Kwangho Kim, Jisu Rinaldo, Alessandro Department of Statistics & Data Science Machine Learning Department} Carnegie Mellon University PittsburghPA15213 United States Inria Saclay – Île-de-France Palaiseau France Department of Statistics & Data Science Carnegie Mellon University Pittsburgh United States
We develop a novel algorithm for feature extraction in time series data by leveraging tools from topological data analysis. Our algorithm provides a simple, efficient way to successfully harness topological features o... 详细信息
来源: 评论
Hybrid physical-deep learning model for astronomical inverse problems
arXiv
收藏 引用
arXiv 2019年
作者: Lanusse, François Melchior, Peter Moolekamp, Fred Berkeley Center for Cosmological Physics Berkeley Institute for Data Science University of California Berkeley BerkeleyCA94709 United States Department of Astrophysical Sciences Center for Statistics and Machine Learning Princeton University PrincetonNJ08544 United States LSST Project Management Office TucsonAZ United States Department of Astrophysical Sciences Princeton University PrincetonNJ08544 United States
We present a Bayesian machine learning architecture that combines a physically motivated parametrization and an analytic error model for the likelihood with a deep generative model providing a powerful data-driven pri... 详细信息
来源: 评论
Algorithmic Regularization in learning Deep Homogeneous Models: Layers are Automatically Balanced
arXiv
收藏 引用
arXiv 2018年
作者: Du, Simon S. Hu, Wei Lee, Jason D. Machine Learning Department School of Computer Science Carnegie Mellon University Computer Science Department Princeton University. Department of Data Sciences and Operations Marshall School of Business University of Southern California.
We study the implicit regularization imposed by gradient descent for learning multi-layer homogeneous functions including feed-forward fully connected and convolutional deep neural networks with linear, ReLU or Leaky ... 详细信息
来源: 评论
Distribution-Free Prediction Sets for Two-Layer Hierarchical Models
arXiv
收藏 引用
arXiv 2018年
作者: Dunn, Robin Wasserman, Larry Ramdas, Aaditya Novartis Pharmaceuticals Corporation Advanced Methodology and Data Science East HanoverNJ United States Department of Statistics & Data Science Carnegie Mellon University PittsburghPA United States Machine Learning Department Carnegie Mellon University PittsburghPA United States
We consider the problem of constructing distribution-free prediction sets for data from two-layer hierarchical distributions. For iid data, prediction sets can be constructed using the method of conformal prediction. ... 详细信息
来源: 评论
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
arXiv
收藏 引用
arXiv 2023年
作者: Lekadir, Karim Feragen, Aasa Fofanah, Abdul Joseph Frangi, Alejandro F. Buyx, Alena Emelie, Anais Lara, Andrea Porras, Antonio R. Chan, An-Wen Navarro, Arcadi Glocker, Ben Botwe, Benard O. Khanal, Bishesh Beger, Brigit Wu, Carol C. Cintas, Celia Langlotz, Curtis P. Rueckert, Daniel Mzurikwao, Deogratias Fotiadis, Dimitrios I. Zhussupov, Doszhan Ferrante, Enzo Meijering, Erik Weicken, Eva González, Fabio A. Asselbergs, Folkert W. Prior, Fred Krestin, Gabriel P. Collins, Gary S. Tegenaw, Geletaw S. Kaissis, Georgios Misuraca, Gianluca Tsakou, Gianna Dwivedi, Girish Kondylakis, Haridimos Jayakody, Harsha Woodruf, Henry C. Mayer, Horst Joachim Aerts, Hugo JWL Walsh, Ian Chouvarda, Ioanna Buvat, Irène Tributsch, Isabell Rekik, Islem Duncan, James Kalpathy-Cramer, Jayashree Zahir, Jihad Park, Jinah Mongan, John Gichoya, Judy W. Schnabel, Julia A. Kushibar, Kaisar Riklund, Katrine Mori, Kensaku Marias, Kostas Amugongo, Lameck M. Fromont, Lauren A. Maier-Hein, Lena Alberich, Leonor Cerdá Rittner, Leticia Phiri, Lighton Marrakchi-Kacem, Linda Donoso-Bach, Lluís Martí-Bonmatí, Luis Cardoso, M. Jorge Bobowicz, Maciej Shabani, Mahsa Tsiknakis, Manolis Zuluaga, Maria A. Bielikova, Maria Fritzsche, Marie-Christine Camacho, Marina Linguraru, Marius George Wenzel, Markus De Bruijne, Marleen Tolsgaard, Martin G. Ghassemi, Marzyeh Ashrafuzzaman, Md Goisauf, Melanie Yaqub, Mohammad Abadía, Mónica Cano Mahmoud, Mukhtar M.E. Elattar, Mustafa Rieke, Nicola Papanikolaou, Nikolaos Lazrak, Noussair Díaz, Oliver Salvado, Olivier Pujol, Oriol Sall, Ousmane Guevara, Pamela Gordebeke, Peter Lambin, Philippe Brown, Pieta Abolmaesumi, Purang Dou, Qi Lu, Qinghua Osuala, Richard Nakasi, Rose Zhou, S. Kevin Napel, Sandy Colantonio, Sara Albarqouni, Shadi Joshi, Smriti Carter, Stacy Klein, Stefan Petersen, Steffen E. Aussó, Susanna Awate, Suyash Raviv, Tammy Riklin Cook, Tessa Mutsvangwa, Tinashe E.M. Rogers, Wendy A. Niessen, Wiro J. Puig-Bosch, Xènia Zeng, Yi Mohammed, Yunusa G. Aquino, Yves Saint James Salahuddin, Zohaib Starmans, Martijn P.A. Department de Matemàtiques i Informàtica Universitat de Barcelona Barcelona Spain Barcelona Spain DTU Compute Technical University of Denmark Kgs Lyngby Denmark Department of Mathematics and Computer Science Faculty of Science and Technology Milton Margai Technical University Freetown Sierra Leone Center for Computational Imaging & Simulation Technologies in Biomedicine Schools of Computing and Medicine University of Leeds Leeds United Kingdom Cardiovascular Science and Electronic Engineering Departments KU Leuven Leuven Belgium Institute of History and Ethics in Medicine Technical University of Munich Munich Germany Faculty of Engineering of Systems Informatics and Sciences of Computing Galileo University Guatemala City Guatemala Department of Biostatistics and Informatics Colorado School of Public Health University of Colorado Anschutz Medical Campus AuroraCO United States Department of Medicine Women’s College Research Institute University of Toronto Toronto Canada Universitat Pompeu Fabra BarcelonaBeta Brain Research Center Barcelona Spain Department of Computing Imperial College London London United Kingdom School of Biomedical & Allied Health Sciences University of Ghana Accra Ghana Department of Midwifery & Radiography School of Health & Psychological Sciences City University of London United Kingdom Kathmandu Nepal European Heart Network Brussels Belgium Department of Thoracic Imaging University of Texas MD Anderson Cancer Center Houston United States IBM Research Africa Nairobi Kenya Departments of Radiology Medicine and Biomedical Data Science Stanford University School of Medicine Stanford United States Institute for AI and Informatics in Medicine Klinikum rechts der Isar Technical University Munich Munich Germany Department of Computing Imperial College London London United Kingdom Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania United Republic of Ioannina Greece Almaty AI Lab Almaty Kazakhstan
Background: Despite major advances in artificial intelligence (AI) research for healthcare, the deployment and adoption of AI technologies remain limited in clinical practice. In recent years, concerns have been raise... 详细信息
来源: 评论
On ADMM in deep learning: Convergence and saturation-avoidance
arXiv
收藏 引用
arXiv 2019年
作者: Zeng, Jinshan Lin, Shao-Bo Yao, Yuan Zhou, Ding-Xuan School of Computer and Information Engineering Jiangxi Normal University Nanchang China Liu Bie Ju Centre for Mathematical Sciences City University of Hong Kong Hong Kong Hong Kong Department of Mathematics Hong Kong University of Science and Technology Hong Kong Hong Kong Center of Intelligent Decision-Making and Machine Learning School of Management Xi’an Jiaotong University Xi’an China School of Data Science Department of Mathematics City University of Hong Kong Hong Kong Hong Kong
In this paper, we develop an alternating direction method of multipliers (ADMM) for deep neural networks training with sigmoid-type activation functions (called sigmoid-ADMM pair), mainly motivated by the gradient-fre... 详细信息
来源: 评论
Sequential monte carlo method for bayesian multiple testing of pairwise interactions among large number of neurons  14
Sequential monte carlo method for bayesian multiple testing ...
收藏 引用
14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2018
作者: Liu, Bin Vinci, Giuseppe Snyder, Adam C. Kass, Robert E. School of Computer Science Jiangsu Key Lab of Big Data Security Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing210023 China Department of Statistics Rice University Houston United States Visual Neuroscience Lab University of Pittsburgh Pittsburgh United States Basis of Cognition Carnegie Mellon University Machine Learning Department Center for the Neural Department of Statistics Pittsburgh United States
The problem of multiple testing arises in many contexts, including testing for pairwise interaction among a large number of neurons. Recently a method was developed to control false positives when covariate informatio... 详细信息
来源: 评论
Modern applications of machine learning in quantum sciences
arXiv
收藏 引用
arXiv 2022年
作者: Dawid, Anna Arnold, Julian Requena, Borja Gresch, Alexander Plodzien, Marcin Donatella, Kaelan Nicoli, Kim A. Stornati, Paolo Koch, Rouven Büttner, Miriam Okula, Robert Muñoz–Gil, Gorka Vargas–Hernández, Rodrigo A. Cervera-Lierta, Alba Carrasquilla, Juan Dunjko, Vedran Gabrié, Marylou Huembeli, Patrick van Nieuwenburg, Evert Vicentini, Filippo Wang, Lei Wetzel, Sebastian J. Carleo, Giuseppe Greplová, Eliška Krems, Roman Marquardt, Florian Tomza, Michal Lewenstein, Maciej Dauphin, Alexandre Faculty of Physics University of Warsaw Poland ICFO - Institut de Ciències Fotòniques The Barcelona Institute of Science and Technology Castelldefels Barcelona08860 Spain Center for Computational Quantum Physics Flatiron Institute New York United States Department of Physics University of Basel Switzerland Institute for Theoretical Physics Heinrich Heine University Düsseldorf Germany Institute for Quantum Inspired and Quantum Optimization Hamburg University of Technology Germany Université de Paris CNRS Laboratoire Matériaux et Phénomènes Quantiques France Machine Learning Group Technische Universität Berlin Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Department of Applied Physics Aalto University Espoo Finland Institute of Physics Albert-Ludwig University of Freiburg Germany International Centre for Theory of Quantum Technologies University of Gdańsk Poland Department of Algorithms and System Modeling Faculty of Electronics Faculty of Electronics Telecommunications and Informatics Gdańsk University of Technology Poland Institute for Theoretical Physics University of Innsbruck Austria Department of Chemistry University of Toronto Canada Vector Institute for Artificial Intelligence MaRS Centre Toronto Canada Department of Chemistry and Chemical Biology McMaster University Hamilton Canada Barcelona Supercomputing Center Spain LIACS Leiden University Netherlands CMAP École Polytechnique France Switzerland Menten AI Inc. Palo AltoCA United States Niels Bohr Institute Copenhagen Denmark CPHT CNRS École Polytechnique Institut Polytechnique de Paris PalaiseauF-91128 France Beijing National Lab for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing China Songshan Lake Materials Laboratory Dongguan China Perimeter Institute for Theoretical Physics Waterloo Canada Kavli Institute of Nanoscience Delft University of Technology DelftNL-2600 GA Netherlands Department of
In this book, we provide a comprehensive introduction to the most recentadvances in the application of machine learning methods in quantum sciences. Wecover the use of deep learning and kernel methods in supervised, u... 详细信息
来源: 评论