咨询与建议

限定检索结果

文献类型

  • 698 篇 期刊文献
  • 545 篇 会议
  • 3 册 图书

馆藏范围

  • 1,246 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 754 篇 工学
    • 517 篇 计算机科学与技术...
    • 445 篇 软件工程
    • 166 篇 生物工程
    • 133 篇 信息与通信工程
    • 107 篇 控制科学与工程
    • 99 篇 生物医学工程(可授...
    • 71 篇 光学工程
    • 63 篇 电气工程
    • 51 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 31 篇 机械工程
    • 31 篇 仪器科学与技术
    • 26 篇 网络空间安全
    • 25 篇 建筑学
  • 562 篇 理学
    • 318 篇 数学
    • 175 篇 生物学
    • 169 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 66 篇 化学
    • 62 篇 系统科学
  • 182 篇 管理学
    • 96 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 56 篇 工商管理
  • 89 篇 医学
    • 72 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 38 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 30 篇 法学
    • 28 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 18 篇 农学
  • 12 篇 教育学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 73 篇 machine learning
  • 69 篇 accuracy
  • 67 篇 deep learning
  • 39 篇 training
  • 33 篇 convolutional ne...
  • 32 篇 real-time system...
  • 29 篇 feature extracti...
  • 27 篇 predictive model...
  • 24 篇 image segmentati...
  • 22 篇 reviews
  • 22 篇 decision making
  • 22 篇 artificial intel...
  • 21 篇 reinforcement le...
  • 21 篇 medical services
  • 21 篇 machine learning...
  • 20 篇 diseases
  • 20 篇 forecasting
  • 19 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 computational mo...

机构

  • 60 篇 machine learning...
  • 48 篇 department of st...
  • 41 篇 center for data ...
  • 37 篇 center for machi...
  • 35 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 18 篇 munich center fo...
  • 18 篇 machine learning...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 munich data scie...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 12 篇 division of arti...
  • 12 篇 machine learning...
  • 12 篇 departments of c...

作者

  • 70 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 16 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 li zhang

语言

  • 749 篇 英文
  • 496 篇 其他
  • 2 篇 中文
检索条件"机构=Machine Learning and Data Science"
1246 条 记 录,以下是861-870 订阅
排序:
MCBench: A Benchmark Suite for Monte Carlo Sampling Algorithms
arXiv
收藏 引用
arXiv 2025年
作者: Ding, Zeyu Grunwald, Cornelius Ickstadt, Katja Kröninger, Kevin La Cagnina, Salvatore Department of Statistics TU Dortmund University Vogelpothsweg 87 Dortmund44227 Germany Department of Physics TU Dortmund University Otto-Hahn-Straße 4 Dortmund44227 Germany Lamarr-Institute for Machine Learning and Artificial Intelligence Joseph-von-Fraunhofer-Straße 25 Dortmund44227 Germany TU Dortmund - Center for Data Science and Simulation TU Dortmund University August-Schmidt-Straße 4 Dortmund44227 Germany
In this paper, we present MCBench, a benchmark suite designed to assess the quality of Monte Carlo (MC) samples. The benchmark suite enables quantitative comparisons of samples by applying different metrics, including... 详细信息
来源: 评论
The leave-one-covariate-out conditional randomization test
arXiv
收藏 引用
arXiv 2020年
作者: Katsevich, Eugene Ramdas, Aaditya Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University
Conditional independence testing is an important problem, yet provably hard without assumptions. One of the assumptions that has become popular of late is called "model-X", where we assume we know the joint ... 详细信息
来源: 评论
T-Cell Receptor Optimization with Reinforcement learning and Mutation Polices for Precision Immunotherapy  27th
T-Cell Receptor Optimization with Reinforcement Learning an...
收藏 引用
27th International Conference on Research in Computational Molecular Biology, RECOMB 2023
作者: Chen, Ziqi Min, Martin Renqiang Guo, Hongyu Cheng, Chao Clancy, Trevor Ning, Xia Computer Science and Engineering The Ohio State University ColumbusOH43210 United States Machine Learning Department NEC Labs PrincetonNJ08540 United States Digital Technologies Research Centre National Research Council Canada Ontario Canada Department of Medicine Baylor College of Medicine HoustonTX77030 United States NEC Oncolmmunity AS Oslo Cancer Cluster Innovation Park Ullernchausséen 64 Oslo0379 Norway Biomedical Informatics The Ohio State University ColumbusOH43210 United States Translational Data Analytics Institute The Ohio State University ColumbusOH43210 United States
T cells monitor the health status of cells by identifying foreign peptides displayed on their surface. T-cell receptors (TCRs), which are protein complexes found on the surface of T cells, are able to bind to these pe... 详细信息
来源: 评论
Condition Monitoring and Fault Diagnosis of BLDC Motor in Electric Vehicles Using Artificial Intelligence
Condition Monitoring and Fault Diagnosis of BLDC Motor in El...
收藏 引用
Artificial Intelligence in Education and Industry 4.0 (IDICAIEI), DMIHER International Conference on
作者: Swapnil Gundewar Meher Langote Swapna Kamble Prashant Kamble Artificial Intelligence and Machine Learning Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Sawangi Maharashtra India Artificial Intelligence and Data Science Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Sawangi Maharashtra India Department of Information Technology Yeshwantrao Chavan College of Engineering Nagpur Maharashtra India Department of Mechanical Technology Yeshwantrao Chavan College of Engineering Nagpur Maharashtra India
Due to their high benefits in terms of environment and standards of battery advancement, Electric Vehicles (EVs) are extremely important in the shift towards transportation. Here the Brushless DC (BLDC) motor is an in... 详细信息
来源: 评论
Uncertainty quantification for wide-bin unfolding: one-at-a-time strict bounds and prior-optimized confidence intervals
arXiv
收藏 引用
arXiv 2021年
作者: Stanley, Michael Patil, Pratik Kuusela, Mikael Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science NSF AI Planning Institute for Data-Driven Discovery in Physics Carnegie Mellon University PittsburghPA15213 United States
Unfolding is an ill-posed inverse problem in particle physics aiming to infer a true particle-level spectrum from smeared detector-level data. For computational and practical reasons, these spaces are typically discre... 详细信息
来源: 评论
Precise Asymptotics of Bagging Regularized M-estimators
arXiv
收藏 引用
arXiv 2024年
作者: Koriyama, Takuya Patil, Pratik Du, Jin-Hong Tan, Kai Bellec, Pierre C. Booth School of Business The University of Chicago ChicagoIL60637 United States Department of Statistics University of California BerkeleyCA94720 United States Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Department of Statistics Rutgers University New BrunswickNJ08854 United States
We characterize the squared prediction risk of ensemble estimators obtained through subagging (subsample bootstrap aggregating) regularized M-estimators and construct a consistent estimator for the risk. Specifically,... 详细信息
来源: 评论
A Review on Soil Moisture Monitoring Methods using Satellite Images
A Review on Soil Moisture Monitoring Methods using Satellite...
收藏 引用
Artificial Intelligence in Education and Industry 4.0 (IDICAIEI), DMIHER International Conference on
作者: Prateek Verma Aahash Kamble Aditya Barhate Abhay Tale Amit Gudadhe Department of Artificial Intelligence and Machine Learning Faculty of Engineering & Technology Datta Meghe Institute of Higher Education & Research Wardha Maharashtra India Department of Artificial Intelligence and Data Science Faculty of Engineering & Technology Datta Meghe Institute of Higher Education & Research Wardha Maharashtra India Department of Basic Sciences and Humanities Faculty of Engineering & Technology Datta Meghe Institute of Higher Education & Research Sawangi (Meghe) Wardha Maharashtra India
Soil moisture is an important parameter in the hydrological cycle and an important component for agricultural production and prediction. The regular monitoring of soil moisture plays a big role in the prediction and m... 详细信息
来源: 评论
Semi-Supervised Siamese Network for Identifying Bad data in Medical Imaging datasets
arXiv
收藏 引用
arXiv 2021年
作者: Belton, Niamh Lawlor, Aonghus Curran, Kathleen M. Science Foundation Ireland Centre for Research Training in Machine Learning School of Medicine School of Computer Science University College Dublin Insight Centre for Data Analytics University College Dublin Dublin Ireland
Noisy data present in medical imaging datasets can often aid the development of robust models that are equipped to handle real-world data. However, if the bad data contains insufficient anatomical information, it can ... 详细信息
来源: 评论
Parameter estimation for cellular automata
arXiv
收藏 引用
arXiv 2023年
作者: Kazarnikov, Alexey Ray, Nadja Haario, Heikki Lappalainen, Joona Rupp, Andreas Heidelberg University Mathematikon Im Neuenheimer Feld 205 Heidelberg69120 Germany Mathematical Institute for Machine Learning and Data Science Catholic University of Eichstätt-Ingolstadt Hohe-Schul-Str. 5 Ingolstadt85049 Germany School of Engineering Science Lappeenranta–Lahti University of Technology P.O. Box 20 Lappeenranta53851 Finland Department of Mathematics Faculty of Mathematics and Computer Science Saarland University SaarbrückenDE-66123 Germany
Self-organizing complex systems can be modeled using cellular automaton models. However, the parametrization of these models is crucial and significantly determines the resulting structural pattern. In this research, ... 详细信息
来源: 评论
COMPUTER AUDITION: FROM TASK-SPECIFIC machine learning TO FOUNDATION MODELS
arXiv
收藏 引用
arXiv 2024年
作者: Triantafyllopoulos, Andreas Tsangko, Iosif Gebhard, Alexander Mesaros, Annamaria Virtanen, Tuomas Schuller, Björn W. CHI – Chair of Health Informatics Technical University of Munich MRI Munich Germany Audio Research Group Tampere University Tampere Finland EIHW – Chair of Embedded Intelligence for Health Care and Wellbeing University of Augsburg Augsburg Germany GLAM – Group on Language Audio & Music Imperial College London United Kingdom MCML – Munich Center for Machine Learning Munich Germany MDSI – Munich Data Science Institute Munich Germany
Foundation models (FMs) are increasingly spearheading recent advances on a variety of tasks that fall under the purview of computer audition – the use of machines to understand sounds. They feature several advantages... 详细信息
来源: 评论