咨询与建议

限定检索结果

文献类型

  • 687 篇 期刊文献
  • 531 篇 会议
  • 3 册 图书

馆藏范围

  • 1,221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 740 篇 工学
    • 508 篇 计算机科学与技术...
    • 440 篇 软件工程
    • 165 篇 生物工程
    • 126 篇 信息与通信工程
    • 101 篇 控制科学与工程
    • 99 篇 生物医学工程(可授...
    • 71 篇 光学工程
    • 60 篇 电气工程
    • 49 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 30 篇 机械工程
    • 27 篇 仪器科学与技术
    • 24 篇 建筑学
    • 24 篇 土木工程
  • 549 篇 理学
    • 311 篇 数学
    • 174 篇 生物学
    • 165 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 64 篇 化学
    • 62 篇 系统科学
  • 180 篇 管理学
    • 94 篇 管理科学与工程(可...
    • 87 篇 图书情报与档案管...
    • 56 篇 工商管理
  • 86 篇 医学
    • 70 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 38 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 29 篇 法学
    • 27 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 18 篇 农学
  • 12 篇 教育学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 71 篇 machine learning
  • 64 篇 deep learning
  • 63 篇 accuracy
  • 37 篇 training
  • 31 篇 convolutional ne...
  • 29 篇 real-time system...
  • 27 篇 feature extracti...
  • 26 篇 predictive model...
  • 23 篇 image segmentati...
  • 22 篇 reviews
  • 22 篇 decision making
  • 21 篇 reinforcement le...
  • 21 篇 artificial intel...
  • 20 篇 medical services
  • 20 篇 diseases
  • 20 篇 machine learning...
  • 20 篇 forecasting
  • 17 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 data models

机构

  • 60 篇 machine learning...
  • 47 篇 department of st...
  • 40 篇 center for data ...
  • 36 篇 center for machi...
  • 35 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 18 篇 machine learning...
  • 17 篇 munich center fo...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich data scie...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...

作者

  • 69 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 15 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 li zhang

语言

  • 859 篇 英文
  • 360 篇 其他
  • 2 篇 中文
检索条件"机构=Machine Learning and Data Science"
1221 条 记 录,以下是871-880 订阅
排序:
Heavy-tailed streaming statistical estimation
arXiv
收藏 引用
arXiv 2021年
作者: Tsai, Che-Ping Prasad, Adarsh Balakrishnan, Sivaraman Ravikumar, Pradeep Department of Machine Learning Carnegie-Mellon University PittsburghPA15213 United States Department of Statistics and Data Science Carnegie-Mellon University PittsburghPA15213 United States
We consider the task of heavy-tailed statistical estimation given streaming p-dimensional samples. This could also be viewed as stochastic optimization under heavy-tailed distributions, with an additional O(p) space c... 详细信息
来源: 评论
Sharp statistical guarantees for adversarially robust gaussian classification
arXiv
收藏 引用
arXiv 2020年
作者: Dan, Chen Wei, Yuting Ravikumar, Pradeep Computer Science Department Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University
Adversarial robustness has become a fundamental requirement in modern machine learning applications. Yet, there has been surprisingly little statistical understanding so far. In this paper, we provide the first result... 详细信息
来源: 评论
Position: Bayesian Deep learning is Needed in the Age of Large-Scale AI  41
Position: Bayesian Deep Learning is Needed in the Age of Lar...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
TNCR: Table net detection and classification dataset
arXiv
收藏 引用
arXiv 2021年
作者: Abdallah, Abdelrahman Berendeyev, Alexander Nuradin, Islam Nurseitov, Daniyar Department of Machine Learning & Data Science Satbayev University Almaty Almaty050013 Kazakhstan National Open Research Laboratory for Information and Space Technologies Satbayev University Almaty Almaty050013 Kazakhstan
We present TNCR, a new table dataset with varying image quality collected from free websites. TNCR dataset can be used for table detection in scanned document images and their classification into 5 different classes. ... 详细信息
来源: 评论
Predicting the Initial Conditions of the Universe using a Deterministic Neural Network
arXiv
收藏 引用
arXiv 2023年
作者: Jindal, Vaibhav Liang, Albert Singh, Aarti Ho, Shirley Jamieson, Drew Machine Learning Department Carnegie Mellon University United States Cohesity Two Sigma Investments United States Center for Computational Astrophysics Flatiron Institute United States Department of Physics Center for Data Science New York University United States Department of Astrophysical Sciences Princeton University United States Max Planck Institute for Astrophysics Germany Carnegie Mellon University United States
Finding the initial conditions that led to the current state of the universe is challenging because it involves searching over an intractable input space of initial conditions, along with modeling their evolution via ... 详细信息
来源: 评论
Adaptive hybrid density functionals
arXiv
收藏 引用
arXiv 2024年
作者: Khan, Danish Price, Alastair James Arthur Ach, Maximilian L. von Lilienfeld, O. Anatole Trottier, Olivier Chemical Physics Theory Group Department of Chemistry University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoON Canada Acceleration Consortium University of Toronto TorontoON Canada Department of Physics University of Toronto St. George Campus TorontoON Canada Department of Physics Ludwig-Maximilians-Universität Munich Germany Department of Materials Science and Engineering University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Exact exchange and correlation contributions are known to crucially affect electronic states, which in turn govern covalent bond formation and breaking in chemical species. Empirically averaging the exact exchange adm... 详细信息
来源: 评论
APPROXIMATION THEORY, COMPUTING, AND DEEP learning ON THE WASSERSTEIN SPACE
arXiv
收藏 引用
arXiv 2023年
作者: Fornasier, Massimo Heid, Pascal Sodini, Giacomo Enrico TUM School of Computation Information Technlogy Department of Mathematics Boltzmannstrasse 3 Garching bei München85748 Germany TUM Institute for Advanced Studies Germany Munich Data Science Institute Germany Munich Center for Machine Learning Germany Institut für Mathematik Fakultät für Mathematik Universität Wien Oskar-Morgenstern-Platz 1 Wien1090 Austria
The challenge of approximating functions in infinite-dimensional spaces from finite samples is widely regarded as formidable. In this study, we delve into the challenging problem of the numerical approximation of Sobo... 详细信息
来源: 评论
The Role of Blockchain Technology in Supply chain Management for data Security
The Role of Blockchain Technology in Supply chain Management...
收藏 引用
Blockchain and Distributed Systems Security (ICBDS), IEEE International Conference on
作者: Dipika R. Birari Vijay U. Rathod Aarti Dandavate Nilesh Shelke Ranjit Kumar Masira M. S Kulkarni Department of Information Technology Army Institute of Technology Pune Department of Artificial Intelligent and Machine Learning G H Raisoni College of Engineering and Management Wagholi Pune Department of Computer Engineering Dhole Patil College of Engineering Pune Department of Computer Science and Engineering Symbiosis Institute of Technology Nagpur Campus Symbiosis International Deemed University Pune India Department of Computer Engineering Ajeenkya D Y Patil University Pune Department of Cyber Security and Data Science G H Raisoni College of Engineering and Management Wagholi Pune
In a traditional supply chain system, the process of producing raw materials so that a product may be delivered to a customer is a manual operation with insufficient data and transaction security. The entire process i... 详细信息
来源: 评论
Transformer-based Annotation Bias-aware Medical Image Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Liao, Zehui Xie, Yutong Hu, Shishuai Xia, Yong National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology School of Computer Science and Engineering Northwestern Polytechnical University Xi’an710072 China Australian Institute for Machine Learning The University of Adelaide AdelaideSA Australia Ningbo Institute of Northwestern Polytechnical University Ningbo315048 China Research and Development Institute Northwestern Polytechnical University in Shenzhen Shenzhen518057 China
Manual medical image segmentation is subjective and suffers from annotator-related bias, which can be mimicked or amplified by deep learning methods. Recently, researchers have suggested that such bias is the combinat... 详细信息
来源: 评论
Classification under Nuisance Parameters and Generalized Label Shift in Likelihood-Free Inference
arXiv
收藏 引用
arXiv 2024年
作者: Masserano, Luca Shen, Alex Doro, Michele Dorigo, Tommaso Izbicki, Rafael Lee, Ann B. Department of Statistics and Data Science Carnegie Mellon University Pittsburgh United States Machine Learning Department Carnegie Mellon University Pittsburgh United States Department of Physics and Astronomy Università di Padova Padova Italy Istituto Nazionale di Fisica Nucleare Sezione di Padova Italy Lulea Techniska Universitet Lulea Sweden Universal Scientific Education and Research Network Italy Department of Statistics Universidade Federal de São Carlos São Paulo Brazil
An open scientific challenge is how to classify events with reliable measures of uncertainty, when we have a mechanistic model of the data-generating process but the distribution over both labels and latent nuisance p...
来源: 评论