咨询与建议

限定检索结果

文献类型

  • 687 篇 期刊文献
  • 531 篇 会议
  • 3 册 图书

馆藏范围

  • 1,221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 740 篇 工学
    • 508 篇 计算机科学与技术...
    • 440 篇 软件工程
    • 165 篇 生物工程
    • 126 篇 信息与通信工程
    • 101 篇 控制科学与工程
    • 99 篇 生物医学工程(可授...
    • 71 篇 光学工程
    • 60 篇 电气工程
    • 49 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 30 篇 机械工程
    • 27 篇 仪器科学与技术
    • 24 篇 建筑学
    • 24 篇 土木工程
  • 549 篇 理学
    • 311 篇 数学
    • 174 篇 生物学
    • 165 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 64 篇 化学
    • 62 篇 系统科学
  • 180 篇 管理学
    • 94 篇 管理科学与工程(可...
    • 87 篇 图书情报与档案管...
    • 56 篇 工商管理
  • 86 篇 医学
    • 70 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 38 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 29 篇 法学
    • 27 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 18 篇 农学
  • 12 篇 教育学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 71 篇 machine learning
  • 64 篇 deep learning
  • 63 篇 accuracy
  • 37 篇 training
  • 31 篇 convolutional ne...
  • 29 篇 real-time system...
  • 27 篇 feature extracti...
  • 26 篇 predictive model...
  • 23 篇 image segmentati...
  • 22 篇 reviews
  • 22 篇 decision making
  • 21 篇 reinforcement le...
  • 21 篇 artificial intel...
  • 20 篇 medical services
  • 20 篇 diseases
  • 20 篇 machine learning...
  • 20 篇 forecasting
  • 17 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 data models

机构

  • 60 篇 machine learning...
  • 47 篇 department of st...
  • 40 篇 center for data ...
  • 36 篇 center for machi...
  • 35 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 18 篇 machine learning...
  • 17 篇 munich center fo...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich data scie...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...

作者

  • 69 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 15 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 li zhang

语言

  • 859 篇 英文
  • 360 篇 其他
  • 2 篇 中文
检索条件"机构=Machine Learning and Data Science"
1221 条 记 录,以下是921-930 订阅
排序:
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
On learning ising models under huber's contamination model  20
On learning ising models under huber's contamination model
收藏 引用
Proceedings of the 34th International Conference on Neural Information Processing Systems
作者: Adarsh Prasad Vishwak Srinivasan Sivaraman Balakrishnan Pradeep Ravikumar Machine Learning Department Carnegie Mellon University Pittsburgh PA Department of Statistics and Data Science Carnegie Mellon University Pittsburgh PA and Machine Learning Department Carnegie Mellon University Pittsburgh PA
We study the problem of learning Ising models in a setting where some of the samples from the underlying distribution can be arbitrarily corrupted. In such a setup, we aim to design statistically optimal estimators in...
来源: 评论
Software for dataset-wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRelAy
arXiv
收藏 引用
arXiv 2021年
作者: Anders, Christopher J. Neumann, David Samek, Wojciech Müller, Klaus-Robert Lapuschkin, Sebastian Machine Learning Group Department of Electrical Engineering and Computer Science Technische Universität Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Fraunhofer Heinrich Hertz Institute Berlin Germany Machine Learning and Communications Group Department of Electrical Engineering and Computer Science Technische Universität Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max Planck Institut für Informatik Saarbrücken Germany
Deep Neural Networks (DNNs) are known to be strong predictors, but their prediction strategies can rarely be understood. With recent advances in Explainable Artificial Intelligence (XAI), approaches are available to e... 详细信息
来源: 评论
Evaluating adversarial robustness for deep neural network interpretability in fMRI decoding
arXiv
收藏 引用
arXiv 2020年
作者: McClure, Patrick Moraczewski, Dustin Lam, Ka Chun Thomas, Adam Pereira, Francisco Machine Learning Team National Institute of Mental Health Data Science and Sharing Team National Institute of Mental Health
While deep neural networks (DNNs) are being increasingly used to make predictions from high-dimensional, complex data, they are widely seen as uninterpretable "black boxes", since it can be difficult to disc... 详细信息
来源: 评论
Sports-QA: A Large-Scale Video Question Answering Benchmark for Complex and Professional Sports
arXiv
收藏 引用
arXiv 2024年
作者: Li, Haopeng Deng, Andong Liu, Jun Rahmani, Hossein Guo, Yulan Schiele, Bernt Bennamoun, Mohammed Ke, Qiuhong School of Computing and Information Systems University of Melbourne Australia Center for Research in Computer Vision University of Central Florida United States Pillar Singapore University of Technology and Design Singapore School of Computing and Communications Lancaster University United Kingdom School of Electronics and Communication Engineering Sun Yat-sen University China Department of Computer Vision and Machine Learning Max Planck Institute for Informatics Saarland Informatics Campus Germany School of Physics Maths and Computing University of Western Australia Australia Department of Data Science & AI Monash University Australia
Reasoning over sports videos for question answering is an important task with numerous applications, such as player training and information retrieval. However, this task has not been explored due to the lack of relev... 详细信息
来源: 评论
Accurate machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
arXiv
收藏 引用
arXiv 2022年
作者: Unke, Oliver T. Stöhr, Martin Ganscha, Stefan Unterthiner, Thomas Maennel, Hartmut Kashubin, Sergii Ahlin, Daniel Gastegger, Michael Sandonas, Leonardo Medrano Tkatchenko, Alexandre Müller, Klaus-Robert Google Research Brain Team Machine Learning Group Technische Universität Berlin Berlin10587 Germany Technische Universität Berlin Berlin10623 Germany Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg BASLEARN TU Berlin Berlin10587 Germany BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin10587 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes. Accurate MD simulations require computationally demanding quantum-mechanical calculations, being practically limited... 详细信息
来源: 评论
OneProt: TOWARDS MULTI-MODAL PROTEIN FOUNDATION MODELS
arXiv
收藏 引用
arXiv 2024年
作者: Flöge, Klemens Udayakumar, Srisruthi Sommer, Johanna Piraud, Marie Kesselheim, Stefan Fortuin, Vincent Günneman, Stephan van der Weg, Karel J. Gohlke, Holger Bazarova, Alina Merdivan, Erinc ELPIS lab Helmholtz AI Munich Germany School of Computation Information and Technology Technical University of Munich Munich Germany Helmholtz Munich Munich Germany Jülich Supercomputing Center Forschungszentrum Jülich Jülich52425 Germany Munich Center for Machine Learning Munich Germany Forschungszentrum Jülich Jülich52425 Germany Institute for Pharmaceutical and Medicinal Chemistry Heinrich Heine University Düsseldorf Düsseldorf40225 Germany Munich Data Science Institute Technical University of Munich Munich Germany
Recent AI advances have enabled multi-modal systems to model and translate diverse information spaces. Extending beyond text and vision, we introduce OneProt, a multi-modal AI for proteins that integrates structural, ... 详细信息
来源: 评论
Reproducing kernel Hilbert space, Mercer's theorem, eigenfunctions, Nyström method, and use of kernels in machine learning: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on kernels, kernel methods, and related fields. We start with reviewing the history of kernels in functional analysis and machine learning. Then, Mercer kernel, Hilbert and Banach s... 详细信息
来源: 评论
Occam's razor for AI: Coarse-graining Hammett Inspired Product Ansatz in Chemical Space
arXiv
收藏 引用
arXiv 2023年
作者: Bragato, Marco Von Rudorff, Guido Falk Von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 1416 WienAT1090 Austria University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Heinrich-Plett-Straße 40 Kassel34132 Germany Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Germany Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
data-hungry machine learning methods have become a new standard to efficiently navigate chemical compound space for molecular and materials design and discovery. Due to the severe scarcity and cost of high-quality exp... 详细信息
来源: 评论
Computationally Efficient Approximations for Matrix-based Rényi's Entropy
arXiv
收藏 引用
arXiv 2021年
作者: Gong, Tieliang Dong, Yuxin Yu, Shujian Dong, Bo The School of Computer Science and Technology Xi'an Jiaotong University Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an710049 China The Machine Learning Group UiT - The Arctic University of Norway Department of Computer Science Vrije University Amsterdam Amsterdam Netherlands
The recently developed matrix-based Rényi's αorder entropy enables measurement of information in data simply using the eigenspectrum of symmetric positive semi-definite (PSD) matrices in reproducing kernel H... 详细信息
来源: 评论