咨询与建议

限定检索结果

文献类型

  • 685 篇 期刊文献
  • 531 篇 会议
  • 3 册 图书

馆藏范围

  • 1,219 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 738 篇 工学
    • 509 篇 计算机科学与技术...
    • 441 篇 软件工程
    • 165 篇 生物工程
    • 128 篇 信息与通信工程
    • 102 篇 控制科学与工程
    • 99 篇 生物医学工程(可授...
    • 71 篇 光学工程
    • 61 篇 电气工程
    • 49 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 29 篇 机械工程
    • 27 篇 仪器科学与技术
    • 24 篇 建筑学
    • 24 篇 土木工程
  • 551 篇 理学
    • 313 篇 数学
    • 174 篇 生物学
    • 165 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 64 篇 化学
    • 63 篇 系统科学
  • 180 篇 管理学
    • 93 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 56 篇 工商管理
  • 87 篇 医学
    • 71 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 38 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 29 篇 法学
    • 27 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 19 篇 农学
  • 12 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 71 篇 machine learning
  • 63 篇 accuracy
  • 61 篇 deep learning
  • 36 篇 training
  • 31 篇 convolutional ne...
  • 29 篇 real-time system...
  • 26 篇 predictive model...
  • 26 篇 feature extracti...
  • 23 篇 image segmentati...
  • 22 篇 reviews
  • 22 篇 decision making
  • 21 篇 reinforcement le...
  • 20 篇 medical services
  • 20 篇 artificial intel...
  • 20 篇 diseases
  • 20 篇 machine learning...
  • 20 篇 forecasting
  • 17 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 data models

机构

  • 59 篇 machine learning...
  • 46 篇 department of st...
  • 40 篇 center for data ...
  • 37 篇 center for machi...
  • 33 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 17 篇 munich center fo...
  • 17 篇 machine learning...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich data scie...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...

作者

  • 68 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 15 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 dong bin

语言

  • 1,024 篇 英文
  • 192 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science"
1219 条 记 录,以下是941-950 订阅
排序:
TEEM: Two-Factor Energy Evaluation Metric Toward Green Big data System
TEEM: Two-Factor Energy Evaluation Metric Toward Green Big D...
收藏 引用
IEEE Conference on Global Communications (GLOBECOM)
作者: Weidong Fang Chunsheng Zhu Mohsen Guizani Zhiqi Li Wuxiong Zhang Joel J.P.C. Rodrigues Science and Technology on Micro-system Laboratory Shanghai Institute of Micro-system and Information Technology Chinese Academy of Sciences Shanghai China University of Chinese Academy of Sciences Beijing China Shanghai Research and Development Center for Micro-Nano Electronics Shanghai China College of Big Data and Internet Shenzhen Technology University Shenzhen China Machine Learning Department Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) UAE COPELABS Lusófona University Lisbon Portugal
Toward green Big data System (BDS), one of the key requirements is to save energy consumption so that the system lifetime can be prolonged. Hence, the energy evaluation metric for the measurement of energy efficiency ...
来源: 评论
DSGD-CECA: Decentralized SGD with Communication-Optimal Exact Consensus Algorithm
arXiv
收藏 引用
arXiv 2023年
作者: Ding, Lisang Jin, Kexin Ying, Bicheng Yuan, Kun Yin, Wotao Department of Mathematics University of California Los AngelesCA United States Department of Mathematics Princeton University PrincetonNJ United States Google Inc. Los AngelesCA United States Center for Machine Learning Research Peking University Beijing China AI for Science Institute Beijing China National Engineering Labratory for Big Data Analytics and Applications Beijing China Decision Intelligence Lab. Alibaba US BellevueWA United States
Decentralized Stochastic Gradient Descent (SGD) is an emerging neural network training approach that enables multiple agents to train a model collaboratively and simultaneously. Rather than using a central parameter s... 详细信息
来源: 评论
Factor Analysis, Probabilistic Principal Component Analysis, Variational Inference, and Variational Autoencoder: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on factor analysis, probabilistic Principal Component Analysis (PCA), variational inference, and Variational Autoencoder (VAE). These methods, which are tightly related, are dimensi... 详细信息
来源: 评论
Towards self-driving laboratories: The central role of density functional theory in the AI age
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Bing von Rudorff, Guido Falk Anatole von Lilienfeld, O. University of Vienna Faculty of Physics Kolingasse 14-16 WienAT1090 Austria University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Heinrich-Plett-Straße 40 Kassel34132 Germany Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Department of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Density functional theory (DFT) plays a pivotal role for the chemical and materials science due to its relatively high predictive power, applicability, versatility and computational efficiency. We review recent progre... 详细信息
来源: 评论
Effective resampling approach for skewed distribution on imbalanced data set
IAENG International Journal of Computer Science
收藏 引用
IAENG International Journal of Computer science 2020年 第2期47卷 234-249页
作者: Nwe, Mar Mar Lynn, Khin Thidar Data Mining and Machine Learning Lab University of Computer Studies Mandalay Myanmar Faculty of Information Science Department University of Computer Studies Mandalay Myanmar
Accurate classification of unknown input data for imbalanced data sets is difficult, because the predictions of learning classifiers tend to be biased towards the majority class and ignore the minority class. Moreover... 详细信息
来源: 评论
Latent space conditioning on generative adversarial networks
arXiv
收藏 引用
arXiv 2020年
作者: Lopez, Ricard Durall Ho, Kalun Pfreundt, Franz-Josef Keuper, Janis Fraunhofer ITWM Germany IWR University of Heidelberg Germany Fraunhofer Center Machine Learning Germany Data and Web Science Group University of Mannheim Germany Institute for Machine Learning and Analytics Offenburg University Germany
Generative adversarial networks are the state of the art approach towards learned synthetic image generation. Although early successes were mostly unsupervised, bit by bit, this trend has been superseded by approaches... 详细信息
来源: 评论
Artificial Intelligence-Driven Protein Folding System Employing Alpha Fold
Artificial Intelligence-Driven Protein Folding System Employ...
收藏 引用
Multi-Agent Systems for Collaborative Intelligence (ICMSCI), International Conference on
作者: Sowmiya R M. Pravin Kumar T. M. Sathish Kumar Rasika P M. Poornima Devi S. Priya Dharshini Department of Artificial Intelligence and Data Science SNS College of Engineering Coimbatore Tamil Nadu India Department of Medical Electronics Velalar College of Engineering and Technology (Autonomous) Erode Tamil Nadu India Department of Electronics and Communication Engineering K.S.R. College of Engineering Namakkal Tamil Nadu India Department of Pharmaceutics SNS College of Pharmacy and Health Sciences Coimbatore Tamil Nadu India Department of Artificial Intelligence and Machine Learning SNS College of Technology Coimbatore Tamil Nadu India Department of Pharmaceutics Periyar College of Pharmaceutical Sciences Tiruchirappalli Tamil Nadu India
Artificial Intelligence (AI) is a main role to solve the lot of real-live issues. One of the significant challenges in the bioinformatics that researchers have been identified recently is understand the protein foldin... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language Processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Improving Generative Model-based Unfolding with Schrödinger Bridges
arXiv
收藏 引用
arXiv 2023年
作者: Diefenbacher, Sascha Liu, Guan-Horng Mikuni, Vinicius Nachman, Benjamin Nie, Weili Physics Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Autonomous Control and Decision Systems Laboratory Georgia Institute of Technology AtlantaGA30332 United States National Energy Research Scientific Computing Center Berkeley Lab BerkeleyCA94720 United States Berkeley Institute for Data Science University of California BerkeleyCA94720 United States Machine Learning Research Group NVIDIA Research United States
machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area: one based on discriminative models and one ba... 详细信息
来源: 评论
Robust and Fast Measure of Information via Low-rank Representation
arXiv
收藏 引用
arXiv 2022年
作者: Dong, Yuxin Gong, Tieliang Yu, Shujian Chen, Hong Li, Chen School of Computer Science and Technology Xi’an Jiaotong University Xi’an710049 China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Ministry of Education Xi’an710049 China Machine Learning Group UiT - The Arctic University of Norway Norway College of Science Huazhong Agriculture University Wuhan430070 China Engineering Research Center of Intelligent Technology for Agriculture Ministry of Education Wuhan430070 China
The matrix-based Rényi’s entropy allows us to directly quantify information measures from given data, without explicit estimation of the underlying probability distribution. This intriguing property makes it wid... 详细信息
来源: 评论