咨询与建议

限定检索结果

文献类型

  • 685 篇 期刊文献
  • 531 篇 会议
  • 3 册 图书

馆藏范围

  • 1,219 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 738 篇 工学
    • 509 篇 计算机科学与技术...
    • 441 篇 软件工程
    • 165 篇 生物工程
    • 128 篇 信息与通信工程
    • 102 篇 控制科学与工程
    • 99 篇 生物医学工程(可授...
    • 71 篇 光学工程
    • 61 篇 电气工程
    • 49 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 29 篇 机械工程
    • 27 篇 仪器科学与技术
    • 24 篇 建筑学
    • 24 篇 土木工程
  • 551 篇 理学
    • 313 篇 数学
    • 174 篇 生物学
    • 165 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 64 篇 化学
    • 63 篇 系统科学
  • 180 篇 管理学
    • 93 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 56 篇 工商管理
  • 87 篇 医学
    • 71 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 38 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 29 篇 法学
    • 27 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 19 篇 农学
  • 12 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 71 篇 machine learning
  • 63 篇 accuracy
  • 61 篇 deep learning
  • 36 篇 training
  • 31 篇 convolutional ne...
  • 29 篇 real-time system...
  • 26 篇 predictive model...
  • 26 篇 feature extracti...
  • 23 篇 image segmentati...
  • 22 篇 reviews
  • 22 篇 decision making
  • 21 篇 reinforcement le...
  • 20 篇 medical services
  • 20 篇 artificial intel...
  • 20 篇 diseases
  • 20 篇 machine learning...
  • 20 篇 forecasting
  • 17 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 data models

机构

  • 59 篇 machine learning...
  • 46 篇 department of st...
  • 40 篇 center for data ...
  • 37 篇 center for machi...
  • 33 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 17 篇 munich center fo...
  • 17 篇 machine learning...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich data scie...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...

作者

  • 68 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 15 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 dong bin

语言

  • 1,024 篇 英文
  • 192 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science"
1219 条 记 录,以下是951-960 订阅
排序:
Big data = Big Insights? Operationalising Brooks’ Law in a Massive GitHub data Set
arXiv
收藏 引用
arXiv 2022年
作者: Gote, Christoph Schweitzer, Frank Mavrodiev, Pavlin Scholtes, Ingo Department of Systems Design ETH Zurich Weinbergstrasse 56/58 Zurich8092 Switzerland Department of Computer Science XV - Machine Learning for Complex Networks Julius-Maximilians-Universität Würzburg Friedrich-Bergius-Ring 30 Würzburg97076 Germany Data Analytics Group University of Zurich Binzmühlestrasse 14 Zurich8050 Switzerland
Massive data from software repositories and collaboration tools are widely used to study social aspects in software development. One question that several recent works have addressed is how a software project’s size ... 详细信息
来源: 评论
Making method of moments great again? - How can GANs learn distributions
arXiv
收藏 引用
arXiv 2020年
作者: Li, Yuanzhi Dou, Zehao Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Yale University United States
Generative Adversarial Networks (GANs) are widely used models to learn complex real-world distributions. In GANs, the training of the generator usually stops when the discriminator can no longer distinguish the genera... 详细信息
来源: 评论
Dimension-agnostic inference using cross U-statistics
arXiv
收藏 引用
arXiv 2020年
作者: Kim, Ilmun Ramdas, Aaditya Departments of Statistics & Data Science Applied Statistics Yonsei University Seoul Korea Republic of Departments of Statistics & Data Science Machine Learning Carnegie Mellon University Pittsburgh United States
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension d while letting the sample size n increase to infinity. Recently, much effort has been dedicated t... 详细信息
来源: 评论
HOW DOES THE BRAIN COMPUTE WITH PROBABILITIES?
arXiv
收藏 引用
arXiv 2024年
作者: Haefner, Ralf M. Beck, Jeff Savin, Cristina Salmasi, Mehrdad Pitkow, Xaq Department of Brain and Cognitive Sciences University of Rochester RochesterNY United States Department of Neurobiology Duke University DurhamNC United States Departments of Neural Science and Data Science New York University New YorkNY United States Gatsby Computational Neuroscience Unit Max Planck UCL Centre for Computational Psychiatry and Ageing Research University College London United Kingdom Neuroscience Institute Department of Machine Learning Carnegie Mellon University PittsburghPA United States Department of Neuroscience Center for Neuroscience and Artificial Intelligence Baylor College of Medicine HoustonTX United States Department of Electrical and Computer Engineering Department of Computer Science Rice University HoustonTX United States
This perspective piece is the result of a Generative Adversarial Collaboration (GAC) tackling the question 'How does neural activity represent probability distributions?'. We have addressed three major obstacl... 详细信息
来源: 评论
SpectralDefense: Detecting Adversarial Attacks on CNNs in the Fourier Domain
arXiv
收藏 引用
arXiv 2021年
作者: Harder, Paula Pfreundt, Franz-Josef Keuper, Margret Keuper, Janis Competence Center High Performance Computing Fraunhofer ITWM Kaiserslautern Germany Scientic Computing University of Kaiserslautern Kaiserlautern Germany Fraunhofer Center Machine Learning Germany Data and Web Science Group University of Mannheim Germany Offenburg University Germany
—Despite the success of convolutional neural networks (CNNs) in many computer vision and image analysis tasks, they remain vulnerable against so-called adversarial attacks: Small, crafted perturbations in the input i... 详细信息
来源: 评论
Species-specific responses of canopy greenness to the extreme droughts of 2018 and 2022 for four abundant tree species in Germany
收藏 引用
science of the Total Environment 2025年 958卷 177938页
作者: Wang, Yixuan Rammig, Anja Blickensdörfer, Lukas Wang, Yuanyuan Zhu, Xiao Xiang Buras, Allan Professorship for Land Surface-Atmosphere Interactions Technical University of Munich Hans-Carl-v.-Carlowitz-Platz 2 Freising85354 Germany Thünen Institute of Farm Economics Bundesallee 63 Braunschweig38116 Germany Thünen Institute of Forest Ecosystems Alfred-Moeller-Straße 1 Eberswalde16225 Germany Earth Observation Lab Geography Department Humboldt University of Berlin Unter den Linden 6 Berlin10099 Germany Chair of Data Science in Earth Observation Technical University of Munich Arcisstraße 21 Munich80333 Germany Munich Center for Machine Learning Arcisstraße 21 Munich80333 Germany
Germany experienced extreme drought periods in 2018 and 2022, which significantly affected forests. These drought periods were natural experiments, providing valuable insights into how different tree species respond t... 详细信息
来源: 评论
Exploring Self-Attention for Crop-type Classification Explainability
arXiv
收藏 引用
arXiv 2022年
作者: Obadic, Ivica Roscher, Ribana Oliveira, Dario Augusto Borges Zhu, Xiao Xiang Data Science in Earth Observation Technical University of Munich Munich Center for Machine Learning [MCML Arcisstraße 21 Munich80333 Germany Research Center Jülich Institute of Bio- and Geosciences Plant Sciences Wilhelm-Johnen-Straße Jülich52428 Germany International AI Future Lab: Artificial Intelligence for Earth Observation TUM and with School of Applied Mathematics Getulio Vargas Foundation Rio de Janeiro Brazil Data Science in Earth Observation Technical University of Munich Arcisstraße 21 Munich80333 Germany
Automated crop-type classification using Sentinel-2 satellite time series is essential to support agriculture monitoring. Recently, deep learning models based on transformer encoders became a promising approach for cr... 详细信息
来源: 评论
Few-shot Class-incremental learning for 3D Point Cloud Objects
arXiv
收藏 引用
arXiv 2022年
作者: Chowdhury, Townim Cheraghian, Ali Ramasinghe, Sameera Ahmadi, Sahar Saberi, Morteza Rahman, Shafin Dept. of Electrical and Computer Engineering North South University Bangladesh School of Engineering Australian National University Australia Data61 Commonwealth Scientific and Industrial Research Organisation Australia Australian Institute for Machine Learning University of Adelaide Australia Business School The University of New South Wales Australia School of Computer Science and DSI University of Technology Sydney Australia
Few-shot class-incremental learning (FSCIL) aims to incrementally fine-tune a model (trained on base classes) for a novel set of classes using a few examples without forgetting the previous training. Recent efforts ad...
来源: 评论
Autonomous data extraction from peer reviewed literature for training machine learning models of oxidation potentials
arXiv
收藏 引用
arXiv 2023年
作者: Lee, Siwoo Heinen, Stefan Khan, Danish Von Lilienfeld, O. Anatole Department of Chemistry University of Toronto St. George campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Acceleration Consortium University of Toronto 80 St George St TorontoONM5S 3H6 Canada Department of Materials Science and Engineering University of Toronto St. George campus TorontoON Canada Department of Physics University of Toronto St. George campus TorontoON Canada Machine Learning Group Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Berlin Germany
We present an automated data-collection pipeline involving a convolutional neural network and a large language model to extract user-specified tabular data from peer-reviewed literature. The pipeline is applied to 74 ... 详细信息
来源: 评论
Emulation of cosmological mass maps with conditional generative adversarial networks
arXiv
收藏 引用
arXiv 2020年
作者: Perraudin, Nathanaël Marcon, Sandro Lucchi, Aurelien Kacprzak, Tomasz Swiss Data Science Center ETH Zurich Institute for Machine Learning ETH Zurich Institute for Particle Physics and Astrophysics ETH Zurich
Weak gravitational lensing mass maps play a crucial role in understanding the evolution of structures in the universe and our ability to constrain cosmological models. The prediction of these mass maps is based on exp... 详细信息
来源: 评论