咨询与建议

限定检索结果

文献类型

  • 685 篇 期刊文献
  • 531 篇 会议
  • 3 册 图书

馆藏范围

  • 1,219 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 738 篇 工学
    • 509 篇 计算机科学与技术...
    • 441 篇 软件工程
    • 165 篇 生物工程
    • 128 篇 信息与通信工程
    • 102 篇 控制科学与工程
    • 99 篇 生物医学工程(可授...
    • 71 篇 光学工程
    • 61 篇 电气工程
    • 49 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 29 篇 机械工程
    • 27 篇 仪器科学与技术
    • 24 篇 建筑学
    • 24 篇 土木工程
  • 551 篇 理学
    • 313 篇 数学
    • 174 篇 生物学
    • 165 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 64 篇 化学
    • 63 篇 系统科学
  • 180 篇 管理学
    • 93 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 56 篇 工商管理
  • 87 篇 医学
    • 71 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 38 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 29 篇 法学
    • 27 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 19 篇 农学
  • 12 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 71 篇 machine learning
  • 63 篇 accuracy
  • 61 篇 deep learning
  • 36 篇 training
  • 31 篇 convolutional ne...
  • 29 篇 real-time system...
  • 26 篇 predictive model...
  • 26 篇 feature extracti...
  • 23 篇 image segmentati...
  • 22 篇 reviews
  • 22 篇 decision making
  • 21 篇 reinforcement le...
  • 20 篇 medical services
  • 20 篇 artificial intel...
  • 20 篇 diseases
  • 20 篇 machine learning...
  • 20 篇 forecasting
  • 17 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 data models

机构

  • 59 篇 machine learning...
  • 46 篇 department of st...
  • 40 篇 center for data ...
  • 37 篇 center for machi...
  • 33 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 17 篇 munich center fo...
  • 17 篇 machine learning...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich data scie...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...

作者

  • 68 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 15 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 dong bin

语言

  • 1,024 篇 英文
  • 192 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science"
1219 条 记 录,以下是961-970 订阅
排序:
Distribution-free binary classification: Prediction sets, confidence intervals and calibration
arXiv
收藏 引用
arXiv 2020年
作者: Gupta, Chirag Podkopaev, Aleksandr Ramdas, Aaditya Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Carnegie Mellon University United States
We study three notions of uncertainty quantification-calibration, confidence intervals and prediction sets-for binary classification in the distribution-free setting, that is without making any distributional assumpti... 详细信息
来源: 评论
FASTEN: Fuzzy Neural Support Vector machine for Classification
收藏 引用
IEEE Transactions on Fuzzy Systems 2025年
作者: Yuan, Zhian Qian, Yuhua Liang, Xinyan Kou, Yi Hou, Chenping Hu, Qinghua Shanxi University Institute of Big Data Science and Industry Key laboratory of Evolutionary Science Intelligence of Shanxi Province Shanxi Taiyuan030006 China National University of Defense Technology College of Science Hunan Changsha410073 China Tianjin University College of Intelligence and Computing Tianjin Key Laboratory of Machine Learning Tianjin300350 China
Classification tasks have long been a central concern in the field of machine learning. Although deep neural network-based approaches offer a novel, versatile and highly precise solution for classification tasks, the ... 详细信息
来源: 评论
Ensuring the data Security and Integrity over Cloud Computing Environment using Novel Cipher Strategy
Ensuring the Data Security and Integrity over Cloud Computin...
收藏 引用
IEEE International Conference on Engineering Education: Innovative Practices and Future Trends (AICERA)
作者: Praveen Kumar E B. Yasotha Narmadha PG P. Chandrakala C. Ushapriya G Chamundeeswari Department of CSE (IoT) Sri Krishna College of Technology Coimbatore Tamil Nadu India Department of Data science and Business systems SRMIST kattankulathur Tamil Nadu India Department of Computer Science and Engineering Panimalar Engineering College Chennai Tamil Nadu India Department of Electrical and Electronics Engineering Prince Shri Venkateshwara Padmavathy Engineering College Chennai Tamil Nadu India Department of Artificial Intelligence and Machine Learning St. Martin's Engineering College Telangana India Department of Electronics and Communication Engineering Saveetha Engineering college Chennai Tamil Nadu India
The advent of cloud computing has revolutionized the Internet. Users may effortlessly collaborate, back up, and access their information from any location thanks to cloud computing. When it comes to providing IT enabl...
来源: 评论
On conditional versus marginal bias in multi-armed bandits
arXiv
收藏 引用
arXiv 2020年
作者: Shin, Jaehyeok Rinaldo, Alessandro Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
The bias of the sample means of the arms in multiarmed bandits is an important issue in adaptive data analysis that has recently received considerable attention in the literature. Existing results relate in precise wa... 详细信息
来源: 评论
Improved decision making with similarity based machine learning: Applications in chemistry
arXiv
收藏 引用
arXiv 2022年
作者: Lemm, Dominik von Rudorff, Guido Falk von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 14-16 ViennaAT-1090 Austria University of Vienna Vienna Doctoral School in Physics Boltzmanngasse 5 ViennaAT-1090 Austria Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Despite the fundamental progress in autonomous molecular and materials discovery, data scarcity throughout chemical compound space still severely hampers the use of modern ready-made machine learning models as they re... 详细信息
来源: 评论
DORA: Exploring Outlier Representations in Deep Neural Networks
arXiv
收藏 引用
arXiv 2022年
作者: Bykov, Kirill Deb, Mayukh Grinwald, Dennis Müller, Klaus-Robert Höhne, Marina M.-C. Potsdam Germany Technical University of Berlin Berlin Germany Machine Learning Group Technical University of Berlin Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institut für Informatik Saarbrücken66123 Germany Google Research Brain Team Berlin Germany Department of Computer Science University of Potsdam Germany Department of Physics and Technology UiT Arctic University of Norway Norway
Deep Neural Networks (DNNs) excel at learning complex abstractions within their internal representations. However, the concepts they learn remain opaque, a problem that becomes particularly acute when models unintenti... 详细信息
来源: 评论
An Investigation of Smart Detection for Small Lung Tumor with Tumor Pattern Recognition Algorithm
An Investigation of Smart Detection for Small Lung Tumor wit...
收藏 引用
Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), International Conference on
作者: G. Hariharan P. Prasanth P. Arthi Devarani T. Sajana Indhumathi C Ashok Kumar Deportment of Artificial Intelligence and Machine Learning Malla Reddy University Hyderabad Telangana India Department of Information Technology Vel Tech Multi Tech Dr. Rangarajan Dr.Sakunthala Engineering College Chennai Tamil Nadu India Department of Electronics and Communication Engineering R. M K College of Engineering and Technology Thiruvallur Tamil Nadu India Department of Artificial Intelligence and Data Science KoneruLakshmaiah Education Foundation Vaddeswaram Andhra Pradesh India Department of Computer Science and Business Systems R.M. K. Engineering College Kavaraipettai Tamil Nadu Department of Computer Science BanasthaliVidyapith Rajasthan India
The Small-cell lung tumor is the prime public concern, resulting in increased mortality. Various therapeutic approaches have made progress in the handling of small-cell lung tumor. It's considered the backbone of ... 详细信息
来源: 评论
On the power of conditional independence testing under model-X
arXiv
收藏 引用
arXiv 2020年
作者: Katsevich, Eugene Ramdas, Aaditya Department of Statistics and Data Science University of Pennsylvania United States Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
For testing conditional independence (CI) of a response Y and a predictor X given covariates Z, the recently introduced model-X (MX) framework has been the subject of active methodological research, especially in the ... 详细信息
来源: 评论
Estimate the efficiency of multiprocessor's cash memory work algorithms
arXiv
收藏 引用
arXiv 2021年
作者: Hamada, Mohamed A. Abdallah, Abdelrahman International Information Technology University Almaty Almaty050000 Kazakhstan Department of Machine Learning & Data Science Satbayev University Almaty Almaty050013 Kazakhstan National Open Research Laboratory for Information and Space Technologies Satbayev University Almaty Almaty050013 Kazakhstan
Many computer systems for calculating the proper organization of memory are among the most critical issues. Using a tier cache memory (along with branching prediction) is an effective means of increasing modern multi-... 详细信息
来源: 评论
Modeling Annotator Preference and Stochastic Annotation Error for Medical Image Segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Liao, Zehui Hu, Shishuai Xie, Yutong Xia, Yong National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology School of Computer Science and Engineering Northwestern Polytechnical University Xi’an710072 China Australian Institute for Machine Learning The University of Adelaide AdelaideSA5000 Australia
Manual annotation of medical images is highly subjective, leading to inevitable and huge annotation biases. Deep learning models may surpass human performance on a variety of tasks, but they may also mimic or amplify ... 详细信息
来源: 评论