咨询与建议

限定检索结果

文献类型

  • 257 篇 期刊文献
  • 110 篇 会议
  • 1 册 图书

馆藏范围

  • 368 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 233 篇 工学
    • 150 篇 计算机科学与技术...
    • 126 篇 软件工程
    • 61 篇 生物工程
    • 40 篇 信息与通信工程
    • 39 篇 生物医学工程(可授...
    • 33 篇 控制科学与工程
    • 24 篇 光学工程
    • 19 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 建筑学
    • 13 篇 土木工程
    • 13 篇 安全科学与工程
    • 10 篇 机械工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 仪器科学与技术
  • 176 篇 理学
    • 89 篇 数学
    • 66 篇 生物学
    • 48 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 14 篇 地球物理学
    • 11 篇 化学
  • 63 篇 管理学
    • 34 篇 图书情报与档案管...
    • 30 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 28 篇 医学
    • 25 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
  • 5 篇 教育学
  • 1 篇 文学

主题

  • 15 篇 machine learning
  • 14 篇 deep learning
  • 12 篇 accuracy
  • 11 篇 image segmentati...
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 data mining
  • 4 篇 cosmology
  • 4 篇 metadata

机构

  • 37 篇 center for data ...
  • 34 篇 center for machi...
  • 33 篇 munich center fo...
  • 16 篇 munich center fo...
  • 13 篇 munich data scie...
  • 12 篇 beijing internat...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 school of mathem...
  • 8 篇 peking universit...
  • 7 篇 munich data scie...
  • 7 篇 mdsi – munich da...
  • 7 篇 mcml – munich ce...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich data scie...
  • 6 篇 peking universit...

作者

  • 19 篇 zhu xiao xiang
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 7 篇 shi yilei
  • 6 篇 li hongwei bran
  • 6 篇 linguraru marius...
  • 6 篇 dong bin
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...
  • 6 篇 wu lei
  • 6 篇 milling manuel
  • 5 篇 bakas spyridon

语言

  • 320 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science Center"
368 条 记 录,以下是1-10 订阅
排序:
RandD activities at machine learning and data science center
收藏 引用
NTT Technical Review 2016年 第2期14卷
作者: Ueda, Naonori Deprtment of Machine Learning and Data Science Center Senior Distinguished Scientist NTT Communication Science Laboratories Japan
The machine learning and data science center (MLC) was established in April 2013 as a research and development hub of big data analysis technologies at NTT laboratories with the aim of creating innovative services fro... 详细信息
来源: 评论
Parallelizing Video Anomaly Detection Using Reconstruction and Future Frame Prediction  6th
Parallelizing Video Anomaly Detection Using Reconstruction a...
收藏 引用
6th International conference on communication and computational technologies, ICCCT 2024
作者: Vasudevan, Vibhav Ramakrishnan, Srinivas Seth, Utkarsh Shreya, M.B. Shylaja, S.S. Center for Data Science and Applied Machine Learning RR Campus Karnataka Bengaluru India
Video anomaly detection (VAD) is a demanding task because the very definition of anomalies in videos is inherently inconclusive and also due to the high manpower required to supervise lengthy videos. This research pap... 详细信息
来源: 评论
Urban Land Cover Classification with Efficient Hybrid Quantum machine learning Model  13
Urban Land Cover Classification with Efficient Hybrid Quantu...
收藏 引用
13th IEEE Congress on Evolutionary Computation, CEC 2024
作者: Fan, Fan Shi, Yilei Zhu, Xiao Xiang Data Science in Earth Observation Munich Germany Wessling Germany Munich Germany Munich Center for Machine Learning Munich Germany
Urban land cover classification aims to derive crucial information from earth observation data and categorize it into specific land uses. To achieve accurate classification, sophisticated machine learning models train... 详细信息
来源: 评论
Intelligent Assistant for Multivariant Analysis  26
Intelligent Assistant for Multivariant Analysis
收藏 引用
26th International Conference of the Catalan Association for Artificial Intelligence, CCIA 2024
作者: Angerri, Xavier Delgado, Oscar Gibert, Karina Knowledge Engineering and Machine Learning Group Intelligent Data Science and Artificial Intelligence Research Center Universtitat Politècnica de Catalunya Spain
When a Knowledge Discovery from data (KDD) (Fayyad, Piatetsky-Shapiro, & Smyth, 1996) process is being applied to get knowledge, several methods could be used (Gibert, et al., 2018). A simple and fast way to obtai... 详细信息
来源: 评论
Finding the transcription factor binding locations using novel algorithm segmentation to filtration (S2F)
收藏 引用
Journal of Ambient Intelligence and Humanized Computing 2024年 第9期15卷 3347-3358页
作者: Theepalakshmi, P. Srinivasulu Reddy, U. Department of Computer Science and Engineering Gandhi Institute of Technology and Management Karnataka Bengaluru India Machine Learning and Data Analytics Lab Center of Excellence in Artificial Intelligence Department of Computer Applications National Institute of Technology Tamilnadu Tiruchirappalli India
The primary aim of identifying the binding motifs in gene regulation is to understand the transcriptional regulation molecular mechanism systematically. In this study, the (, d) motif search issue was considered ... 详细信息
来源: 评论
The Map Equation Goes Neural: Mapping Network Flows with Graph Neural Networks  38
The Map Equation Goes Neural: Mapping Network Flows with Gra...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Blöcker, Christopher Tan, Chester Scholtes, Ingo Data Analytics Group Department of Informatics University of Zurich Switzerland Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science Julius-Maximilians-Universität Würzburg Germany
Community detection is an essential tool for unsupervised data exploration and revealing the organisational structure of networked systems. With a long history in network science, community detection typically relies ...
来源: 评论
Towards Highly Efficient Anomaly Detection for Predictive Maintenance  23
Towards Highly Efficient Anomaly Detection for Predictive Ma...
收藏 引用
23rd IEEE International Conference on machine learning and Applications, ICMLA 2024
作者: Klüttermann, Simon Peka, Vanlal Doebler, Philipp Müller, Emmanuel Tu Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany Research Center Trustworthy Data Science and Security Dortmund Germany
This paper introduces SEAN, a novel anomaly detection algorithm designed for real-time applications in predictive maintenance. SEAN leverages an ensemble-based approach to deliver competitive performance while drastic... 详细信息
来源: 评论
CUTE: Measuring LLMs' Understanding of Their Tokens
CUTE: Measuring LLMs' Understanding of Their Tokens
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Edman, Lukas Schmid, Helmut Fraser, Alexander Center for Information and Language Processing LMU Munich Germany School of Computation Information and Technology TU Munich Germany Munich Center for Machine Learning Germany Munich Data Science Institute Germany
Large Language Models (LLMs) show remarkable performance on a wide variety of tasks. Most LLMs split text into multi-character tokens and process them as atomic units without direct access to individual characters. Th... 详细信息
来源: 评论
Digital Halftoning via Mixed-Order Weighted ΣΔ Modulation
Digital Halftoning via Mixed-Order Weighted ΣΔ Modulation
收藏 引用
2023 International Conference on Sampling Theory and Applications, SampTA 2023
作者: Krahmer, Felix Veselovska, Anna Technical University of Munich and Munich Center for Machine Learning Dept. of Mathematics & Munich Data Science Institute Garching/Munich Germany
In this paper, we propose 1-bit weighted Σ quantization schemes of mixed order as a technique for digital halftoning. These schemes combine weighted Σ schemes of different orders for two-dimensional signals so one c... 详细信息
来源: 评论
Expected Probabilistic Hierarchies  38
Expected Probabilistic Hierarchies
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Kollovieh, Marcel Charpentier, Bertrand Zügner, Daniel Günnemann, Stephan School of Computation Information and Technology Technical University of Munich Germany Munich Data Science Institute Germany Munich Center for Machine Learning Germany Pruna AI Germany Microsoft Research AI for Science United States
Hierarchical clustering has usually been addressed by discrete optimization using heuristics or continuous optimization of relaxed scores for hierarchies. In this work, we propose to optimize expected scores under a p...
来源: 评论