咨询与建议

限定检索结果

文献类型

  • 256 篇 期刊文献
  • 110 篇 会议
  • 1 册 图书

馆藏范围

  • 367 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 232 篇 工学
    • 150 篇 计算机科学与技术...
    • 126 篇 软件工程
    • 61 篇 生物工程
    • 40 篇 信息与通信工程
    • 39 篇 生物医学工程(可授...
    • 33 篇 控制科学与工程
    • 24 篇 光学工程
    • 19 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 安全科学与工程
    • 12 篇 建筑学
    • 12 篇 土木工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 机械工程
    • 9 篇 仪器科学与技术
  • 175 篇 理学
    • 88 篇 数学
    • 66 篇 生物学
    • 48 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 14 篇 地球物理学
    • 11 篇 化学
  • 62 篇 管理学
    • 34 篇 图书情报与档案管...
    • 29 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 28 篇 医学
    • 25 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 农学
  • 5 篇 法学
  • 5 篇 教育学
  • 1 篇 文学

主题

  • 15 篇 machine learning
  • 14 篇 deep learning
  • 12 篇 accuracy
  • 11 篇 image segmentati...
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 data mining
  • 4 篇 cosmology
  • 4 篇 metadata

机构

  • 37 篇 center for data ...
  • 34 篇 center for machi...
  • 33 篇 munich center fo...
  • 16 篇 munich center fo...
  • 13 篇 munich data scie...
  • 12 篇 beijing internat...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 school of mathem...
  • 8 篇 peking universit...
  • 7 篇 munich data scie...
  • 7 篇 mdsi – munich da...
  • 7 篇 mcml – munich ce...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich data scie...
  • 6 篇 peking universit...

作者

  • 19 篇 zhu xiao xiang
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 7 篇 shi yilei
  • 6 篇 li hongwei bran
  • 6 篇 linguraru marius...
  • 6 篇 dong bin
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...
  • 6 篇 wu lei
  • 6 篇 milling manuel
  • 5 篇 bakas spyridon

语言

  • 319 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science Center"
367 条 记 录,以下是101-110 订阅
排序:
GraphMorph: tubular structure extraction by morphing predicted graphs  24
GraphMorph: tubular structure extraction by morphing predict...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Zhao Zhang Ziwei Zhao Dong Wang Liwei Wang Center for Data Science Peking University and Pazhou Laboratory (Huangpu) Guangzhou Guangdong China Yizhun Medical AI Co. Ltd State Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University and Center for Machine Learning Research Peking University
Accurately restoring topology is both challenging and crucial in tubular structure extraction tasks, such as blood vessel segmentation and road network extraction. Diverging from traditional approaches based on pixel-...
来源: 评论
A causal intervention framework for synthesizing mobility data and evaluating predictive neural networks
arXiv
收藏 引用
arXiv 2023年
作者: Hong, Ye Xin, Yanan Dirmeier, Simon Perez-Cruz, Fernando Raubal, Martin Institute of Cartography and Geoinformation ETH Zurich Switzerland Swiss Data Science Center ETH Zurich Switzerland EPFL Switzerland Institute for Machine Learning Department of Computer Science ETH Zurich Switzerland
Deep neural networks are increasingly utilized in mobility prediction tasks, yet their intricate internal workings pose challenges for interpretability, especially in comprehending how various aspects of mobility beha... 详细信息
来源: 评论
Computing the Bounds of the Number of Reticulations in a Tree-Child Network That Displays a Set of Trees
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Yufeng Zhang, Louxin Department of Computer Science and Engineering University of Connecticut StorrsCT06268 United States Department of Mathematics Center for Data Science and Machine Learning National University of Singapore Singapore119076 Singapore
Phylogenetic network is an evolutionary model that uses a rooted directed acyclic graph (instead of a tree) to model an evolutionary history of species in which reticulate events (e.g., hybrid speciation or horizontal... 详细信息
来源: 评论
Improving generalization and convergence by enhancing implicit regularization  24
Improving generalization and convergence by enhancing implic...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Mingze Wang Jinbo Wang Haotian He Zilin Wang Guanhua Huang Feiyu Xiong Zhiyu Li Weinan E Lei Wu School of Mathematical Sciences Peking University and Institute for Advanced Algorithms Research (Shanghai) School of Mathematical Sciences Peking University School of Data Science University of Science and Technology of China and ByteDance Research Institute for Advanced Algorithms Research (Shanghai) School of Mathematical Sciences Peking University and Center for Machine Learning Research Peking University and Institute for Advanced Algorithms Research (Shanghai) and AI for Science Institute School of Mathematical Sciences Peking University and Center for Machine Learning Research Peking University
In this work, we propose an Implicit Regularization Enhancement (IRE) framework to accelerate the discovery of flat solutions in deep learning, thereby improving generalization and convergence. Specifically, IRE decou...
来源: 评论
Noisy Recovery in Unlimited Sampling via Adaptive Modulo Representations
Noisy Recovery in Unlimited Sampling via Adaptive Modulo Rep...
收藏 引用
International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa)
作者: Felipe Pagginelli Patricio Paul Catala Felix Krahmer Dept. of Mathematics TU Munich Garching Germany IBMI Helmholtz Munich Neuherberg Germany Dept. of Mathematics&Munich Data Science Institute TU Munich and Munich Center for Machine Learning Garching
Recent works put forth the Unlimited Sensing Framework (USF), a novel approach to analog-to-digital conversion for high dynamic range sensing. It addresses the saturation phenomenon that commonly arises when physical ... 详细信息
来源: 评论
Multi-Scale Clinical-Guided Binocular Fusion Framework for Predicting New-Onset Hypertension Over a Four-Year Period
Multi-Scale Clinical-Guided Binocular Fusion Framework for P...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Haoshen Li Zifan Chen Jie Zhao Heyun Chen Hexin Dong Mingze Yuan Bin Dong Li Zhang Center for Data Science Peking University China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China
Hypertension is a major global health concern, linked to various cardiovascular diseases and associated with distinct ocular manifestations. While recent advances in artificial intelligence have enabled accurate diagn... 详细信息
来源: 评论
Audio-based Kinship Verification Using Age Domain Conversion
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Qiyang Akman, Alican Jing, Xin Milling, Manuel Schuller, Björn W. GLAM Department of Computing Imperial College London United Kingdom MRI Technical University of Munich Germany MDSI – Munich Data Science Institute Munich Germany MCML – Munich Center for Machine Learning Munich Germany
Audio-based kinship verification (AKV) is important in many domains, such as home security monitoring, forensic identification, and social network analysis. A key challenge in the task arises from differences in age a... 详细信息
来源: 评论
Enrolment-based personalisation for improving individual-level fairness in speech emotion recognition
arXiv
收藏 引用
arXiv 2024年
作者: Triantafyllopoulos, Andreas Schuller, Björn MRI Technical University of Munich Germany MCML - Munich Center for Machine Learning Germany MDSI - Munich Data Science Institute Germany GLAM - Group on Language Audio & Music Imperial College London United Kingdom
The expression of emotion is highly individualistic. However, contemporary speech emotion recognition (SER) systems typically rely on population-level models that adopt a 'one-size-fits-all' approach for predi... 详细信息
来源: 评论
A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification
arXiv
收藏 引用
arXiv 2024年
作者: Marks, Markus Knott, Manuel Kondapaneni, Neehar Cole, Elijah Defraeye, Thijs Perez-Cruz, Fernando Perona, Pietro California Institute of Technology United States ETH Zurich Institute for Machine Learning Department of Computer Science Switzerland Swiss Data Science Center ETH Zurich and EPFL Switzerland Empa Swiss Federal Laboratories for Materials Science and Technology Switzerland Altos Labs Switzerland
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels. The model is forced to learn about the data's inherent structure ... 详细信息
来源: 评论
The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Bonfanti, Andrea Bruno, Giuseppe Cipriani, Cristina BMW AG Basque Center for Applied Mathematics University of the Basque Country Digital Campus Munich Spain BMW AG Digital Campus Munich Germany Technical University of Munich Munich Center for Machine Learning Munich Data Science Institute Germany
The Neural Tangent Kernel (NTK) viewpoint is widely employed to analyze the training dynamics of overparameterized Physics-Informed Neural Networks (PINNs). However, unlike the case of linear Partial Differential Equa... 详细信息
来源: 评论