咨询与建议

限定检索结果

文献类型

  • 257 篇 期刊文献
  • 110 篇 会议
  • 1 册 图书

馆藏范围

  • 368 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 233 篇 工学
    • 150 篇 计算机科学与技术...
    • 126 篇 软件工程
    • 61 篇 生物工程
    • 40 篇 信息与通信工程
    • 39 篇 生物医学工程(可授...
    • 33 篇 控制科学与工程
    • 24 篇 光学工程
    • 19 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 建筑学
    • 13 篇 土木工程
    • 13 篇 安全科学与工程
    • 10 篇 机械工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 仪器科学与技术
  • 176 篇 理学
    • 89 篇 数学
    • 66 篇 生物学
    • 48 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 14 篇 地球物理学
    • 11 篇 化学
  • 63 篇 管理学
    • 34 篇 图书情报与档案管...
    • 30 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 28 篇 医学
    • 25 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
  • 5 篇 教育学
  • 1 篇 文学

主题

  • 15 篇 machine learning
  • 14 篇 deep learning
  • 12 篇 accuracy
  • 11 篇 image segmentati...
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 data mining
  • 4 篇 cosmology
  • 4 篇 metadata

机构

  • 37 篇 center for data ...
  • 34 篇 center for machi...
  • 33 篇 munich center fo...
  • 16 篇 munich center fo...
  • 13 篇 munich data scie...
  • 12 篇 beijing internat...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 school of mathem...
  • 8 篇 peking universit...
  • 7 篇 munich data scie...
  • 7 篇 mdsi – munich da...
  • 7 篇 mcml – munich ce...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich data scie...
  • 6 篇 peking universit...

作者

  • 19 篇 zhu xiao xiang
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 7 篇 shi yilei
  • 6 篇 li hongwei bran
  • 6 篇 linguraru marius...
  • 6 篇 dong bin
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...
  • 6 篇 wu lei
  • 6 篇 milling manuel
  • 5 篇 bakas spyridon

语言

  • 320 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science Center"
368 条 记 录,以下是121-130 订阅
排序:
TOPOGRAPH: AN EFFICIENT GRAPH-BASED FRAMEWORK FOR STRICTLY TOPOLOGY PRESERVING IMAGE SEGMENTATION
arXiv
收藏 引用
arXiv 2024年
作者: Lux, Laurin Berger, Alexander H. Weers, Alexander Stucki, Nico Rueckert, Daniel Bauer, Ulrich Paetzold, Johannes C. School of Computation Information and Technology Technical University of Munich Germany Department of Computing Imperial College London United Kingdom Munich Center for Machine Learning Germany Munich Data Science Institute Technical University of Munich Munich Germany
Topological correctness plays a critical role in many image segmentation tasks, yet most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy. Existing topology-aware met... 详细信息
来源: 评论
EXPRESSIVITY AND SPEECH SYNTHESIS
arXiv
收藏 引用
arXiv 2024年
作者: Triantafyllopoulos, Andreas Schuller, Björn W. Technical University of Munich MRI Munich Germany GLAM – Group on Language Audio & Music Imperial College London United Kingdom MCML – Munich Center for Machine Learning Munich Germany MDSI – Munich Data Science Institute Munich Germany
Imbuing machines with the ability to talk has been a longtime pursuit of artificial intelligence (AI) research. From the very beginning, the community has not only aimed to synthesise high-fidelity speech that accurat... 详细信息
来源: 评论
The Implicit Regularization of Dynamical Stability in Stochastic Gradient Descent
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Lei Su, Weijie J. School of Mathematical Sciences Peking University Beijing China Center for Machine Learning Research Peking University Beijing China Wharton Statistics and Data Science Department University of Pennsylvania Philadelphia United States
In this paper, we study the implicit regularization of stochastic gradient descent (SGD) through the lens of dynamical stability (Wu et al., 2018). We start by revising existing stability analyses of SGD, showing how ... 详细信息
来源: 评论
On the Generalization of Representation Uncertainty in Earth Observation
arXiv
收藏 引用
arXiv 2025年
作者: Kondylatos, Spyros Bountos, Nikolaos Ioannis Michail, Dimitrios Zhu, Xiao Xiang Camps-Valls, Gustau Papoutsis, Ioannis Orion Lab National Observatory of Athens & National Technical University of Athens Greece Universitat de València Spain Harokopio University of Athens Greece Data Science in Earth Observation Technical University of Munich Germany Munich Center for Machine Learning Germany
Recent advances in Computer Vision have introduced the concept of pretrained representation uncertainty, enabling zero-shot uncertainty estimation. This holds significant potential for Earth Observation (EO), where tr... 详细信息
来源: 评论
HUMAN-IN-THE-LOOP: TOWARDS LABEL EMBEDDINGS FOR MEASURING CLASSIFICATION DIFFICULTY
arXiv
收藏 引用
arXiv 2023年
作者: Hechinger, Katharina Zhu, Xiao Xiang Koller, Christoph Kauermann, Göran Department of Statistics Ludwig-Maximilians-University Munich Germany Chair of Data Science in Earth Observation Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany German Aerospace Center Wessling Germany
Uncertainty in machine learning models is a timely and vast field of research. In supervised learning, uncertainty can already occur in the first stage of the training process, the annotation phase. This scenario is p... 详细信息
来源: 评论
machine learning With data Assimilation and Uncertainty Quantification for Dynamical Systems:A Review
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第6期10卷 1361-1387页
作者: Sibo Cheng César Quilodrán-Casas Said Ouala Alban Farchi Che Liu Pierre Tandeo Ronan Fablet Didier Lucor Bertrand Iooss Julien Brajard Dunhui Xiao Tijana Janjic Weiping Ding Yike Guo Alberto Carrassi Marc Bocquet Rossella Arcucci Data Science Institute Department of ComputingImperial College LondonSW72AZ London Department of Earth Science and Engineering Imperial College LondonSW72AZ London Department of Computer Science and Engineering Hong Kong University of Science and TechnologyHong Kong 999077China the IMT Atlantique Lab-STICCUMR CNRS 6285France and OdysseyInria/IMTFrance.P.Tandeo is also with RIKEN Center for Computational ScienceKobeJapan the CEREA École des Ponts and EDF R&Dîle-de-FranceFrance the Laboratoire Interdisciplinaire des Sciences du Numérique CNRSParis-Saclay UniversityF-91403OrsayFrance the Electricitéde France(EDF) 78401 ChatouFranceInstitut de Mathématiques de Toulouse31062 ToulouseFrance and SINCLAIR AI LabSaclayFrance the Sorbonne University ParisFranceand also with Nansen Environmental and Remote Sensing Center(NERSC)BergenNorway the School of Mathematical Sciences Tongji UniversityShanghai 200092China the Mathematical Institute for Machine Learning and Data Science KU Eichstaett-IngolstadtBavariaGermany the School of Information Science and Technology Nantong UniversityNantong 226019China the Department of Physics and Astronomy“Augusto Righi” University of Bologna40124 BolognaItaly
data assimilation(DA)and uncertainty quantification(UQ)are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal *** applications span from computational fluid dynamics(CFD)... 详细信息
来源: 评论
SHADE: Deep Density-based Clustering
SHADE: Deep Density-based Clustering
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Anna Beer Pascal Weber Lukas Miklautz Collin Leiber Walid Durani Christian Böhm Claudia Plant Faculty of Computer Science University of Vienna Vienna Austria UniVie Doctoral School Computer Science Vienna Austria Database Systems and Data Mining LMU Munich Munich Germany Munich Center for Machine Learning Munich Germany ds: UniVie University of Vienna Vienna Austria
Detecting arbitrarily shaped clusters in high-dimensional noisy data is challenging for current clustering methods. We introduce SHADE, the first deep clustering algorithm that incorporates density-connectivity into i... 详细信息
来源: 评论
Sampling Strategies for Compressive Imaging Under Statistical Noise
Sampling Strategies for Compressive Imaging Under Statistica...
收藏 引用
2023 International Conference on Sampling Theory and Applications, SampTA 2023
作者: Hoppe, Frederik Krahmer, Felix Verdun, Claudio Mayrink Menzel, Marion I. Rauhut, Holger Rwth Aachen University Chair of Mathematics of Information Processing Aachen Germany Technical University of Munich Department of Mathematics Munich Germany Munich Center for Machine Learning Munich Germany Technical University of Munich Munich Data Science Institute Germany Technische Hochschule Ingolstadt AImotion Bavaria Ingolstadt Germany Technical University of Munich Department of Physics Garching Germany Ge Healthcare Munich Germany
Most of the compressive sensing literature in signal processing assumes that the noise present in the measurement has an adversarial nature, i.e., it is bounded in a certain norm. At the same time, the randomization i... 详细信息
来源: 评论
Advancing OCT-Based Retinal Disease Classification with XLSTM: A Framework for Variable-Length Volume Processing
Advancing OCT-Based Retinal Disease Classification with XLST...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Emese Sükei Marzieh Oghbaie Ursula Schmidt-Erfurth Günter Klambauer Hrvoje Bogunović Department of Ophthalmology OPTIMA Lab Medical University of Vienna Austria Institute of Artificial Intelligence Medical University of Vienna Center for Medical Data Science Austria LIT AI Lab Institute for Machine Learning Johannes Kepler University Austria NXAI GmbH Linz Austria
This paper presents a method for retinal disease classification using optical coherence tomography (OCT) scans, specifically addressing the challenge of variable B-scan density across dataset volumes. Deep learning me... 详细信息
来源: 评论
RRSIS: Referring Remote Sensing Image Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Yuan, Zhenghang Mou, Lichao Hua, Yuansheng Zhu, Xiao Xiang Data Science in Earth Observation Technical University of Munich Munich80333 Germany The College of Civil and Transportation Engineering Shenzhen University Shenzhen518060 China The Munich Center for Machine Learning Munich80333 Germany
Localizing desired objects from remote sensing images is of great use in practical applications. Referring image segmentation, which aims at segmenting out the objects to which a given expression refers, has been exte... 详细信息
来源: 评论