咨询与建议

限定检索结果

文献类型

  • 256 篇 期刊文献
  • 110 篇 会议
  • 1 册 图书

馆藏范围

  • 367 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 232 篇 工学
    • 150 篇 计算机科学与技术...
    • 126 篇 软件工程
    • 61 篇 生物工程
    • 40 篇 信息与通信工程
    • 39 篇 生物医学工程(可授...
    • 33 篇 控制科学与工程
    • 24 篇 光学工程
    • 19 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 安全科学与工程
    • 12 篇 建筑学
    • 12 篇 土木工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 机械工程
    • 9 篇 仪器科学与技术
  • 175 篇 理学
    • 88 篇 数学
    • 66 篇 生物学
    • 48 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 14 篇 地球物理学
    • 11 篇 化学
  • 62 篇 管理学
    • 34 篇 图书情报与档案管...
    • 29 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 28 篇 医学
    • 25 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 农学
  • 5 篇 法学
  • 5 篇 教育学
  • 1 篇 文学

主题

  • 15 篇 machine learning
  • 14 篇 deep learning
  • 12 篇 accuracy
  • 11 篇 image segmentati...
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 data mining
  • 4 篇 cosmology
  • 4 篇 metadata

机构

  • 37 篇 center for data ...
  • 34 篇 center for machi...
  • 33 篇 munich center fo...
  • 16 篇 munich center fo...
  • 13 篇 munich data scie...
  • 12 篇 beijing internat...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 school of mathem...
  • 8 篇 peking universit...
  • 7 篇 munich data scie...
  • 7 篇 mdsi – munich da...
  • 7 篇 mcml – munich ce...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich data scie...
  • 6 篇 peking universit...

作者

  • 19 篇 zhu xiao xiang
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 7 篇 shi yilei
  • 6 篇 li hongwei bran
  • 6 篇 linguraru marius...
  • 6 篇 dong bin
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...
  • 6 篇 wu lei
  • 6 篇 milling manuel
  • 5 篇 bakas spyridon

语言

  • 319 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science Center"
367 条 记 录,以下是151-160 订阅
排序:
Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research
arXiv
收藏 引用
arXiv 2024年
作者: Hille, Tobias Stubbemann, Maximilian Hanika, Tom Knowledge & Data Engineering Group University of Kassel Kassel Germany Interdisciplinary Research Center for Information System Design University of Kassel Kassel Germany Information Systems and Machine Learning Lab University of Hildesheim Hildesheim Germany Institute of Computer Science University of Hildesheim Hildesheim Germany
Difficulties in replication and reproducibility of empirical evidences in machine learning research have become a prominent topic in recent years. Ensuring that machine learning research results are sound and reliable... 详细信息
来源: 评论
Transferring Traffic Predictions to Urban Regions Without Target data
Transferring Traffic Predictions to Urban Regions Without Ta...
收藏 引用
International Conference on Intelligent Transportation
作者: Stefan Schestakov Simon Gottschalk Nicolas Tempelmeier Thorben Funke Elena Demidova L3S Research Center Leibniz University Hannover Hannover Germany Volkswagen AG Commercial Vehicles Hannover Germany Data Science & Intelligent Systems (DSIS) Research Group University of Bonn and Lamarr Institute for Machine Learning and Artificial Intelligence Bonn Germany
The scarcity of spatiotemporal traffic data for many urban regions significantly limits the availability of location-specific predictive models for traffic management, mobility services, and road safety. For example, ... 详细信息
来源: 评论
Quantization of Bandlimited Graph Signals
Quantization of Bandlimited Graph Signals
收藏 引用
International Conference on Sampling Theory and Applications (SampTA)
作者: Felix Krahmer He Lyu Rayan Saab Anna Veselovska Rongrong Wang Department of Mathematics & Munich Data Science Institute Technical University of Munich and Munich Center for Machine Learning Garching/Munich Germany Department of Mathematics & Halicioglu Data Science Institute University of California San Diego San Diego USA Department of Computational Mathematics Science and Engineering & Department of Mathematics Michigan State University East Lansing USA
Graph models and graph-based signals are becoming increasingly important in machine learning, natural sciences, and modern signal processing. In this paper, we address the problem of quantizing bandlimited graph signa...
来源: 评论
Investor Risk Profile Determination Model
Investor Risk Profile Determination Model
收藏 引用
International Conference on Management of Large-Scale System Development (MLSD)
作者: Victor Gorelik Tatiana Zolotova Department of Simulation Systems and Operations Research Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences Moscow Russia Department of Data Analysis and Machine Learning Financial University Under the Government of the Russian Federation Moscow Russia
An assessment of the investor’s risk profile is proposed as a risk coefficient in a model with a linear convolution of expected return and variance. The value of the risk coefficient is found from solving the optimiz...
来源: 评论
An iterative-based difference scheme for nonlinear fractional integro-differential equations of Volterra type
收藏 引用
Partial Differential Equations in Applied Mathematics 2025年 13卷
作者: Saini, Gaurav Ghosh, Bappa Chand, Sunita Mohapatra, Jugal Center for Data Science Department of Computer Science and Engineering Siksha ‘O’ Anusandhan (Deemed to be University) India Center for Artificial Intelligence and Machine Learning Department of Computer Science and Engineering Siksha ‘O’ Anusandhan (Deemed to be University) India Department of Mathematics Siksha ‘O’ Anusandhan (Deemed to be University) India Department of Mathematics National Institute of Technology Rourkela India
This paper presents an iterative difference scheme for solving nonlinear fractional integro-differential equations of Volterra type, which are widely used in modeling memory-dependent phenomena in various scientific a... 详细信息
来源: 评论
Domain Adaptation-Based Deep learning Models for Forecasting and Diagnosis of Glaucoma Disease
TechRxiv
收藏 引用
TechRxiv 2022年
作者: Madadi, Yeganeh Abu-Serhan, Hashem Yousefi, Siamak The Data Mining and Machine Learning Laboratory Department of Ophthalmology University of Tennessee Health Science Center TN United States The Hamad Medical Corporation QA Doha Qatar
Domain adaptation methods are designed to extract shared domain-invariant features by projecting data on a common subspace in order to align their domain distributions. However, these methods do not usually consider d... 详细信息
来源: 评论
Marine Predators Algorithm for Energy Scheduling Problem Using Renewable Energy
Marine Predators Algorithm for Energy Scheduling Problem Usi...
收藏 引用
Cyber Resilience (ICCR), International Conference on
作者: Sharif Naser Makhadmeh Ammar Kamal Abasi Mohammed Azmi Al-Betar Department of Data Science and Artificial Intelligence University of Petra Amman Jordan Machine Learning Department Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) Abu Dhabi United Arab Emirates Artificial Intelligence Research Center (AIRC) Ajman University Ajman United Arab Emirates
The Energy Scheduling Problem (ESP) involves scheduling smart home appliances based on electricity pricing schemes. This entails adjusting the timing of operations for these appliances across different periods. The pr... 详细信息
来源: 评论
machine learning for Methane Detection and Quantification from Space - A survey
arXiv
收藏 引用
arXiv 2024年
作者: Tiemann, Enno Zhou, Shanyu Kläser, Alexander Heidler, Konrad Schneider, Rochelle Zhu, Xiao Xiang Data Science in Earth Observation Technical University of Munich Arcisstraße 21 Munich80333 Germany OHB Digital Connect GmbH Bremen Germany University of Valencia Valencia Spain Φ-Lab European Space Agency Frascati Italy Munich Center for Machine Learning Munich Germany
Methane (CH4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO2) over 20 years, and it also acts as an air pollutant. Given its high radiative forcing pote... 详细信息
来源: 评论
Can Multiple Phylogenetic Trees Be Displayed in a Tree-Child Network Simultaneously?
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Yufeng Zhang, Louxin Department of Computer Science and Engineering University of Connecticut Storrs CT06269 United States Department of Mathematics Center for Data Science and Machine Learning National University of Singapore Singapore119076 Singapore
A binary phylogenetic network on a taxon set X is a rooted acyclic digraph in which the degree of each nonleaf node is three and its leaves (i.e. degree-one nodes) are uniquely labeled with the taxa of X. It is tree-c... 详细信息
来源: 评论
Ai-Driven Automated Tool for Abdominal CT Body Composition Analysis in Gastrointestinal Cancer Management
Ai-Driven Automated Tool for Abdominal CT Body Composition A...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Xinyu Nan Meng He Zifan Chen Bin Dong Lei Tang Li Zhang Center for Data Science Peking University China Department of Radiology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education) Peking University Cancer Hospital and Institute Beijing China Beijing International Center for Mathematical Research (BICMR) Peking University Beijing China Center for Machine Learning Research Peking University Beijing China National Biomedical Imaging Center Peking University Beijing China
The incidence of gastrointestinal cancers remains significantly high, particularly in China, emphasizing the importance of accurate prognostic assessments and effective treatment strategies. Research shows a strong co... 详细信息
来源: 评论