咨询与建议

限定检索结果

文献类型

  • 257 篇 期刊文献
  • 110 篇 会议
  • 1 册 图书

馆藏范围

  • 368 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 233 篇 工学
    • 150 篇 计算机科学与技术...
    • 126 篇 软件工程
    • 61 篇 生物工程
    • 40 篇 信息与通信工程
    • 39 篇 生物医学工程(可授...
    • 33 篇 控制科学与工程
    • 24 篇 光学工程
    • 19 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 建筑学
    • 13 篇 土木工程
    • 13 篇 安全科学与工程
    • 10 篇 机械工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 仪器科学与技术
  • 176 篇 理学
    • 89 篇 数学
    • 66 篇 生物学
    • 48 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 14 篇 地球物理学
    • 11 篇 化学
  • 63 篇 管理学
    • 34 篇 图书情报与档案管...
    • 30 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 28 篇 医学
    • 25 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
  • 5 篇 教育学
  • 1 篇 文学

主题

  • 15 篇 machine learning
  • 14 篇 deep learning
  • 12 篇 accuracy
  • 11 篇 image segmentati...
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 data mining
  • 4 篇 cosmology
  • 4 篇 metadata

机构

  • 37 篇 center for data ...
  • 34 篇 center for machi...
  • 33 篇 munich center fo...
  • 16 篇 munich center fo...
  • 13 篇 munich data scie...
  • 12 篇 beijing internat...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 school of mathem...
  • 8 篇 peking universit...
  • 7 篇 munich data scie...
  • 7 篇 mdsi – munich da...
  • 7 篇 mcml – munich ce...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich data scie...
  • 6 篇 peking universit...

作者

  • 19 篇 zhu xiao xiang
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 7 篇 shi yilei
  • 6 篇 li hongwei bran
  • 6 篇 linguraru marius...
  • 6 篇 dong bin
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...
  • 6 篇 wu lei
  • 6 篇 milling manuel
  • 5 篇 bakas spyridon

语言

  • 320 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science Center"
368 条 记 录,以下是31-40 订阅
排序:
The Mathematics of Dots and Pixels: On the Theoretical Foundations of Image Halftoning
arXiv
收藏 引用
arXiv 2024年
作者: Krahmer, Felix Veselovska, Anna Technical University of Munich Department of Mathematics and Munich Data Science Institute Munich Center for Machine Learning Germany
The evolution of image halftoning, from its analog roots to contemporary digital methodologies, encapsulates a fascinating journey marked by technological advancements and creative innovations. Yet the theoretical und... 详细信息
来源: 评论
Expected probabilistic hierarchies  24
Expected probabilistic hierarchies
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Marcel Kollovieh Bertrand Charpentier Daniel Zügner Stephan Günnemann School of Computation Information and Technology Technical University of Munich and Munich Data Science Institute and Munich Center for Machine Learning Pruna AI Microsoft Research AI for Science School of Computation Information and Technology Technical University of Munich and Munich Data Science Institute and Munich Center for Machine Learning and Pruna AI
Hierarchical clustering has usually been addressed by discrete optimization using heuristics or continuous optimization of relaxed scores for hierarchies. In this work, we propose to optimize expected scores under a p...
来源: 评论
EPR-Net: constructing a non-equilibrium potential landscape via a variational force projection formulation
收藏 引用
National science Review 2024年 第7期11卷 135-147页
作者: Yue Zhao Wei Zhang Tiejun Li Center for Data Science Peking University Zuse Institute Berlin Department of Mathematics and Computer Science Freie Universit?t Berlin Laboratory of Mathematics and Applied Mathematics(LMAM)and School of Mathematical Sciences Peking University Center for Machine Learning Research Peking University
We present EPR-Net, a novel and effective deep learning approach that tackles a crucial challenge in biophysics: constructing potential landscapes for high-dimensional non-equilibrium steady-state ***-Net leverages a ... 详细信息
来源: 评论
Comparing zero-shot self-explanations with human rationales in text classification
arXiv
收藏 引用
arXiv 2024年
作者: Brandl, Stephanie Eberle, Oliver Center for Social Data Science University of Copenhagen Denmark Machine Learning Group Technische Universität Berlin Germany
Instruction-tuned LLMs are able to provide an explanation about their output to users by generating self-explanations. These do not require gradient computations or the application of possibly complex XAI methods. In ... 详细信息
来源: 评论
Towards Predicting Menstrual Cycle Phases Exploiting Paralinguistic Features  46
Towards Predicting Menstrual Cycle Phases Exploiting Paralin...
收藏 引用
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
作者: Spiesberger, Anika A. Mallol-Ragolta, Adria Triantafyllopoulos, Andreas Schuller, Björn W. Chi - Health Informatics Klinikum rechts der Isar Technical University of Munich Germany Glam - Group on Language Audio & Music Imperial College London United Kingdom Mcml - Munich Center for Machine Learning Germany Mdsi - Munich Data Science Institute Germany
As a growing number of people focus on understanding their bodies, the menstrual cycle and its impact on reproduction are gaining attention. Several studies have shown that the voice changes during the menstrual cycle... 详细信息
来源: 评论
Using time-aware graph neural networks to predict temporal centralities in dynamic graphs  24
Using time-aware graph neural networks to predict temporal c...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Franziska Heeg Ingo Scholtes Chair of Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science (CAIDAS) Julius-Maximilans-Universität Würzburg
Node centralities play a pivotal role in network science, social network analysis, and recommender systems. In temporal data, static path-based centralities like closeness or betweenness can give misleading results ab...
来源: 评论
Regression in EO: Are VLMs Up to the Challenge?
arXiv
收藏 引用
arXiv 2025年
作者: Xue, Xizhe Zhu, Xiao Xiang Data Science in Earth Observation Technical University of Munich Munich80333 Germany Munich Center for Machine Learning Munich80333 Germany
Earth Observation (EO) data encompass a vast range of remotely sensed information, featuring multi-sensor and multi-temporal, playing an indispensable role in understanding our planet’s dynamics. Recently, Vision Lan... 详细信息
来源: 评论
Federated learning in Medical Imaging: Part I: Toward Multicentral Health Care Ecosystems
收藏 引用
Journal of the American College of Radiology 2022年 第8期19卷 969-974页
作者: Darzidehkalani, Erfan Ghasemi-rad, Mohammad van Ooijen, P.M.A. Department of Radiotherapy University Medical Center Groningen University of Groningen Groningen Netherlands Machine Learning Lab Data Science Center in Health University Medical Center Groningen University of Groningen Netherlands Assistant Professor of Radiology Department of Interventional Radiology Baylor College of Medicine Houston Texas Department of Radiotherapy University Medical Center Groningen University of Groningen Groningen Netherlands Coordinator Machine Learning Lab Data Science Center in Health University Medical Center Groningen University of Groningen Netherlands
With recent developments in medical imaging facilities, extensive medical imaging data are produced every day. This increasing amount of data provides an opportunity for researchers to develop data-driven methods and ... 详细信息
来源: 评论
Deep-learning-Based Large-Scale Forest Height Generation
Deep-Learning-Based Large-Scale Forest Height Generation
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: Qi Zhang Yuanyuan Wang Xiao Xiang Zhu Chair of Data Science in Earth Observation Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany
The vegetation height has been identified as a key biophysical parameter to justify the role of forests in the carbon cycle and ecosystem productivity. Therefore, consistent and large-scale forest height is essential ... 详细信息
来源: 评论
Investor Risk Profile Determination Model  16
Investor Risk Profile Determination Model
收藏 引用
16th International Conference Management of Large-Scale System Development, MLSD 2023
作者: Gorelik, Victor Zolotova, Tatiana Federal Research Center 'Computer Science and Control' of the Russian Academy of Sciences Department of Simulation Systems and Operations Research Moscow Russia Financial University under the Government of the Russian Federation Department of Data Analysis and Machine Learning Moscow Russia
An assessment of the investor's risk profile is proposed as a risk coefficient in a model with a linear convolution of expected return and variance. The value of the risk coefficient is found from solving the opti... 详细信息
来源: 评论