咨询与建议

限定检索结果

文献类型

  • 257 篇 期刊文献
  • 110 篇 会议
  • 1 册 图书

馆藏范围

  • 368 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 233 篇 工学
    • 150 篇 计算机科学与技术...
    • 126 篇 软件工程
    • 61 篇 生物工程
    • 40 篇 信息与通信工程
    • 39 篇 生物医学工程(可授...
    • 33 篇 控制科学与工程
    • 24 篇 光学工程
    • 19 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 建筑学
    • 13 篇 土木工程
    • 13 篇 安全科学与工程
    • 10 篇 机械工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 仪器科学与技术
  • 176 篇 理学
    • 89 篇 数学
    • 66 篇 生物学
    • 48 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 14 篇 地球物理学
    • 11 篇 化学
  • 63 篇 管理学
    • 34 篇 图书情报与档案管...
    • 30 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 28 篇 医学
    • 25 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
  • 5 篇 教育学
  • 1 篇 文学

主题

  • 15 篇 machine learning
  • 14 篇 deep learning
  • 12 篇 accuracy
  • 11 篇 image segmentati...
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 data mining
  • 4 篇 cosmology
  • 4 篇 metadata

机构

  • 37 篇 center for data ...
  • 34 篇 center for machi...
  • 33 篇 munich center fo...
  • 16 篇 munich center fo...
  • 13 篇 munich data scie...
  • 12 篇 beijing internat...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 school of mathem...
  • 8 篇 peking universit...
  • 7 篇 munich data scie...
  • 7 篇 mdsi – munich da...
  • 7 篇 mcml – munich ce...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich data scie...
  • 6 篇 peking universit...

作者

  • 19 篇 zhu xiao xiang
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 7 篇 shi yilei
  • 6 篇 li hongwei bran
  • 6 篇 linguraru marius...
  • 6 篇 dong bin
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...
  • 6 篇 wu lei
  • 6 篇 milling manuel
  • 5 篇 bakas spyridon

语言

  • 320 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science Center"
368 条 记 录,以下是41-50 订阅
排序:
How Transformers Get Rich: Approximation and Dynamics Analysis
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Mingze Yu, Ruoxi Weinan, E. Wu, Lei School of Mathematical Sciences Peking University China School of Mathematical Sciences Center for Machine Learning Research AI for Science Institute Peking University China Center for Data Science Peking University China School of Mathematical Sciences Center for Machine Learning Research Peking University China
Transformers have demonstrated exceptional in-context learning capabilities, yet the theoretical understanding of the underlying mechanisms remains limited. A recent work (Elhage et al., 2021) identified a "rich&... 详细信息
来源: 评论
Audio Enhancement for Computer Audition—An Iterative Training Paradigm Using Sample Importance
收藏 引用
Journal of Computer science & Technology 2024年 第4期39卷 895-911页
作者: Manuel Milling Shuo Liu Andreas Triantafyllopoulos Ilhan Aslan Björn W.Schuller Chair of Embedded Intelligence for Health Care and Wellbeing University of AugsburgAugsburg 86159Germany Chair of Health Informatics München rechts der IsarTechnical University of MunichMunich 81675Germany Munich Center for Machine Learning Munich 80333Germany Huawei Technologies MunichMunich 80992Germany Munich Data Science Institute Garching 85748Germany Group on Language Audio and MusicImperial College LondonLondon SW72AZU.K.
Neural network models for audio tasks,such as automatic speech recognition(ASR)and acoustic scene classification(ASC),are susceptible to noise contamination for real-life *** improve audio quality,an enhancement modul... 详细信息
来源: 评论
SHADE: Deep Density-based Clustering
arXiv
收藏 引用
arXiv 2024年
作者: Beer, Anna Weber, Pascal Miklautz, Lukas Leiber, Collin Durani, Walid Böhm, Christian Plant, Claudia Data Mining and Machine Learning University of Vienna Vienna Austria UniVie Doctoral School Computer Science Vienna Austria Database Systems and Data Mining LMU Munich Munich Germany Munich Center for Machine Learning Munich Germany UniVie Vienna Austria
Detecting arbitrarily shaped clusters in high-dimensional noisy data is challenging for current clustering methods. We introduce SHADE (Structure-preserving High-dimensional Analysis with Density-based Exploration), t... 详细信息
来源: 评论
Quantization of Bandlimited Graph Signals
Quantization of Bandlimited Graph Signals
收藏 引用
2023 International Conference on Sampling Theory and Applications, SampTA 2023
作者: Krahmer, Felix Lyu, He Saab, Rayan Veselovska, Anna Wang, Rongrong Technical University of Munich and Munich Center for Machine Learning Department of Mathematics & Munich Data Science Institute Garching/Munich Germany University of California San Diego Department of Mathematics & Halicioglu Data Science Institute San Diego United States Michigan State University Department of Computational Mathematics Science and Engineering Department of Mathematics East Lansing United States
Graph models and graph-based signals are becoming increasingly important in machine learning, natural sciences, and modern signal processing. In this paper, we address the problem of quantizing bandlimited graph signa... 详细信息
来源: 评论
Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient  41
Double Variance Reduction: A Smoothing Trick for Composite O...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Di, Hao Ye, Haishan Zhang, Yueling Chang, Xiangyu Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China International Business School Beijing Foreign Studies University Beijing China Singapore College of Computing and Data Science NTU Singapore
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods. However, in composite optimization p... 详细信息
来源: 评论
Thai Conversational Chatbot Classification Using BiLSTM and data Augmentation  1st
Thai Conversational Chatbot Classification Using BiLSTM and ...
收藏 引用
1st International Conference on data science and Artificial Intelligence, DSAI 2023
作者: Lhasiw, Nunthawat Tanantong, Tanatorn Sanglerdsinlapachai, Nuttapong Thammasat Research Unit in Data Innovation and Artificial Intelligence Department of Computer Science Faculty of Science and Technology Thammasat University Pathum Thani Thailand Strategic Analytics Networks with Machine Learning and AI Research Team National Electronics and Computer Technology Center Pathum Thani Thailand
Chatbot platforms, e.g., Facebook and Line, have revolutionized human interaction in the digital age. In order to develop an automatic chatbot classification, there are several challenges especially for Thai chat mess... 详细信息
来源: 评论
EXACT CERTIFICATION OF (GRAPH) NEURAL NETWORKS AGAINST LABEL POISONING
arXiv
收藏 引用
arXiv 2024年
作者: Sabanayagam, Mahalakshmi Gosch, Lukas Günnemann, Stephan Ghoshdastidar, Debarghya School of Computation Information and Technology Germany Munich Data Science Institute Technical University of Munich Germany Munich Center for Machine Learning Germany
machine learning models are highly vulnerable to label flipping, i.e., the adversarial modification (poisoning) of training labels to compromise performance. Thus, deriving robustness certificates is important to guar... 详细信息
来源: 评论
Uncertainty Quantification For Learned ISTA  33
Uncertainty Quantification For Learned ISTA
收藏 引用
33rd IEEE International Workshop on machine learning for Signal Processing, MLSP 2023
作者: Hoppe, Frederik Verdun, Claudio Mayrink Laus, Hannah Krahmer, Felix Rauhut, Holger Rwth Aachen University Chair of Mathematics of Information Processing Aachen Germany Technical University of Munich Department of Mathematics Munich Germany Munich Center for Machine Learning Munich Germany Munich Data Science Institute Technical University of Munich Munich Germany
Model-based deep learning solutions to inverse problems have attracted increasing attention in recent years as they bridge state-of-the-art numerical performance with interpretability. In addition, the incorporated pr... 详细信息
来源: 评论
A MEMORY EFFICIENT RANDOMIZED SUBSPACE OPTIMIZATION METHOD FOR TRAINING LARGE LANGUAGE MODELS
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Yiming Zhang, Yuan Liu, Yin Yuan, Kun Wen, Zaiwen Beijing International Center for Mathematical Research Peking University Beijing China Center for Data Science Peking University Beijing China Center for Machine Learning Research Peking University Beijing China
The memory challenges associated with training Large Language Models (LLMs) have become a critical concern, particularly when using the Adam optimizer. To address this issue, numerous memory-efficient techniques have ...
来源: 评论
On the Effectiveness of Heterogeneous Ensemble Methods for Re-identification
arXiv
收藏 引用
arXiv 2024年
作者: Klüttermann, Simon Rutinowski, Jérôme Nguyen, Anh Grimme, Britta Roidl, Moritz Müller, Emmanuel TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany Research Center Trustworthy Data Science and Security Germany
In this contribution, we introduce a novel ensemble method for the re-identification of industrial entities, using images of chipwood pallets and galvanized metal plates as dataset examples. Our algorithms replace com... 详细信息
来源: 评论