咨询与建议

限定检索结果

文献类型

  • 257 篇 期刊文献
  • 110 篇 会议
  • 1 册 图书

馆藏范围

  • 368 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 233 篇 工学
    • 150 篇 计算机科学与技术...
    • 126 篇 软件工程
    • 61 篇 生物工程
    • 40 篇 信息与通信工程
    • 39 篇 生物医学工程(可授...
    • 33 篇 控制科学与工程
    • 24 篇 光学工程
    • 19 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 建筑学
    • 13 篇 土木工程
    • 13 篇 安全科学与工程
    • 10 篇 机械工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 仪器科学与技术
  • 176 篇 理学
    • 89 篇 数学
    • 66 篇 生物学
    • 48 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 14 篇 地球物理学
    • 11 篇 化学
  • 63 篇 管理学
    • 34 篇 图书情报与档案管...
    • 30 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 28 篇 医学
    • 25 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
  • 5 篇 教育学
  • 1 篇 文学

主题

  • 15 篇 machine learning
  • 14 篇 deep learning
  • 12 篇 accuracy
  • 11 篇 image segmentati...
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 data mining
  • 4 篇 cosmology
  • 4 篇 metadata

机构

  • 37 篇 center for data ...
  • 34 篇 center for machi...
  • 33 篇 munich center fo...
  • 16 篇 munich center fo...
  • 13 篇 munich data scie...
  • 12 篇 beijing internat...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 school of mathem...
  • 8 篇 peking universit...
  • 7 篇 munich data scie...
  • 7 篇 mdsi – munich da...
  • 7 篇 mcml – munich ce...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich data scie...
  • 6 篇 peking universit...

作者

  • 19 篇 zhu xiao xiang
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 7 篇 shi yilei
  • 6 篇 li hongwei bran
  • 6 篇 linguraru marius...
  • 6 篇 dong bin
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...
  • 6 篇 wu lei
  • 6 篇 milling manuel
  • 5 篇 bakas spyridon

语言

  • 320 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science Center"
368 条 记 录,以下是51-60 订阅
排序:
TVINESYNTH: A TRUNCATED C-VINE COPULA GENERATOR OF SYNTHETIC TABULAR data TO BALANCE PRIVACY AND UTILITY
arXiv
收藏 引用
arXiv 2025年
作者: Griesbauer, Elisabeth Czado, Claudia Frigessi, Arnoldo Haff, Ingrid Hobæk Norwegian Computing Center University of Oslo Integreat - Norwegian Centre for Knowledge-driven Machine Learning Norway Technical University of Munich Munich Data Science Institute Germany University of Oslo Integreat - Norwegian Centre for Knowledge-driven Machine Learning Norway
We propose TVineSynth, a vine copula based synthetic tabular data generator, which is designed to balance privacy and utility, using the vine tree structure and its truncation to do the trade-off. Contrary to syntheti... 详细信息
来源: 评论
The map equation goes neural: mapping network flows with graph neural networks  24
The map equation goes neural: mapping network flows with gra...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Christopher Blöcker Chester Tan Ingo Scholtes Data Analytics Group Department of Informatics University of Zurich Switzerland Chair of Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science Julius-Maximilians-Universität Würzburg Germany
Community detection is an essential tool for unsupervised data exploration and revealing the organisational structure of networked systems. With a long history in network science, community detection typically relies ...
来源: 评论
Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics  38
Probabilistic Decomposed Linear Dynamical Systems for Robust...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Chen, Yenho Mudrik, Noga Johnsen, Kyle A. Alagapan, Sankaraleengam Charles, Adam S. Rozell, Christopher J. Machine Learning Center Georgia Institute of Technology United States School of Electrical and Computer Engineering Georgia Institute of Technology United States Coulter Dept. of Biomedical Engineering Emory University Georgia Institute of Technology United States Department of Biomedical Engineering Mathematical Institute for Data Science Center for Imaging Science Kavli Neuroscience Discovery Institute Johns Hopkins University United States
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals. For example, switching and decomposed models describe complex systems using laten...
来源: 评论
Log barriers for safe black-box optimization with application to safe reinforcement learning
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2024年 第1期25卷 8101-8154页
作者: Ilnura Usmanova Yarden As Maryam Kamgarpou Andreas Krause Swiss Data Science Center Paul Scherrer Institute Villigen Switzerland Institute for Machine Learning D-INFK ETH Zürich Zurich Switzerland STI-IGM-Sycamore EPFL Lausanne Switzerland
Optimizing noisy functions online, when evaluating the objective requires experiments on a deployed system, is a crucial task arising in manufacturing, robotics and various other domains. Often, constraints on safe in... 详细信息
来源: 评论
Federated learning in Medical Imaging: Part II: Methods, Challenges, and Considerations
收藏 引用
Journal of the American College of Radiology 2022年 第8期19卷 975-982页
作者: Darzidehkalani, Erfan Ghasemi-rad, Mohammad van Ooijen, P.M.A. Department of Radiation Oncology University Medical Center Groningen University of Groningen Groningen Netherlands Machine Learning Lab Data Science Center in Health University Medical Center Groningen University of Groningen Netherlands Department of Interventional Radiology Baylor College of Medicine Houston Texas
Federated learning is a machine learning method that allows decentralized training of deep neural networks among multiple clients while preserving the privacy of each client's data. Federated learning is instrumen... 详细信息
来源: 评论
Task Specific Pretraining with Noisy Labels for Remote Sensing Image Segmentation
Task Specific Pretraining with Noisy Labels for Remote Sensi...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: Chenying Liu Conrad M Albrecht Yi Wang Xiao Xiang Zhu Data Science in Earth Observation Technical University of Munich Germany German Aerospace Center Remote Sensing Technology Institute Germany Munich Center for Machine Learning (MCML) Germany
Compared to supervised deep learning, self-supervision provides remote sensing a tool to reduce the amount of exact, human-crafted geospatial annotations. While image-level information for unsupervised pretraining eff... 详细信息
来源: 评论
HTC-DC Net: Monocular Height Estimation From Single Remote Sensing Images
收藏 引用
IEEE Transactions on Geoscience and Remote Sensing 2023年 61卷
作者: Chen, Sining Shi, Yilei Xiong, Zhitong Zhu, Xiao Xiang Chair of Data Science in Earth Observation Munich80333 Germany School of Engineering and Design Munich80333 Germany Chair of Data Science in Earth Observation The Munich Center for Machine Learning Munich80333 Germany
Three-dimensional geoinformation is of great significance for understanding the living environment;however, 3-D perception from remote sensing data, especially on a large scale, is restricted, mainly due to the high c... 详细信息
来源: 评论
ENHANCING ZEROTH-ORDER FINE-TUNING FOR LANGUAGE MODELS WITH LOW-RANK STRUCTURES
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Yiming Zhang, Yuan Cao, Liyuan Yuan, Kun Wen, Zaiwen Beijing International Center for Mathematical Research Peking University Beijing China Center for Data Science Peking University Beijing China Center for Machine Learning Research Peking University Beijing China
Parameter-efficient fine-tuning (PEFT) significantly reduces memory costs when adapting large language models (LLMs) for downstream applications. However, traditional first-order (FO) fine-tuning algorithms incur subs...
来源: 评论
Position: insights from survey methodology can improve training data  24
Position: insights from survey methodology can improve train...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Stephanie Eckman Barbara Plank Frauke Kreuter Social Data Science Center University of Maryland College Park MD Center for Information and Language Processing (CIS) LMU Munich Germany and Computer Science Department IT University of Copenhagen Denmark and Munich Center for Machine Learning (MCML) LMU Munich Germany Institute for Statistics and Munich Center for Machine Learning (MCML) LMU Munich Germany and Social Data Science Center and Joint Program in Survey Methodology University of Maryland College Park MD
Whether future AI models are fair, trustworthy, and aligned with the public's interests rests in part on our ability to collect accurate data about what we want the models to do. However, collecting high-quality d...
来源: 评论
Bringing closure to FDR control: beating the e-Benjamini-Hochberg procedure
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Ziyu Fischer, Lasse Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Competence Center for Clinical Trials Bremen University of Bremen Germany Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States
False discovery rate (FDR) has been a key metric for error control in multiple hypothesis testing, and many methods have developed for FDR control across a diverse cross-section of settings and applications. We develo...
来源: 评论