咨询与建议

限定检索结果

文献类型

  • 257 篇 期刊文献
  • 110 篇 会议
  • 1 册 图书

馆藏范围

  • 368 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 233 篇 工学
    • 150 篇 计算机科学与技术...
    • 126 篇 软件工程
    • 61 篇 生物工程
    • 40 篇 信息与通信工程
    • 39 篇 生物医学工程(可授...
    • 33 篇 控制科学与工程
    • 24 篇 光学工程
    • 19 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 建筑学
    • 13 篇 土木工程
    • 13 篇 安全科学与工程
    • 10 篇 机械工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 仪器科学与技术
  • 176 篇 理学
    • 89 篇 数学
    • 66 篇 生物学
    • 48 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 14 篇 地球物理学
    • 11 篇 化学
  • 63 篇 管理学
    • 34 篇 图书情报与档案管...
    • 30 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 28 篇 医学
    • 25 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
  • 5 篇 教育学
  • 1 篇 文学

主题

  • 15 篇 machine learning
  • 14 篇 deep learning
  • 12 篇 accuracy
  • 11 篇 image segmentati...
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 data mining
  • 4 篇 cosmology
  • 4 篇 metadata

机构

  • 37 篇 center for data ...
  • 34 篇 center for machi...
  • 33 篇 munich center fo...
  • 16 篇 munich center fo...
  • 13 篇 munich data scie...
  • 12 篇 beijing internat...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 school of mathem...
  • 8 篇 peking universit...
  • 7 篇 munich data scie...
  • 7 篇 mdsi – munich da...
  • 7 篇 mcml – munich ce...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich data scie...
  • 6 篇 peking universit...

作者

  • 19 篇 zhu xiao xiang
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 7 篇 shi yilei
  • 6 篇 li hongwei bran
  • 6 篇 linguraru marius...
  • 6 篇 dong bin
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...
  • 6 篇 wu lei
  • 6 篇 milling manuel
  • 5 篇 bakas spyridon

语言

  • 320 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science Center"
368 条 记 录,以下是61-70 订阅
排序:
Revealing excited states of rotational Bose-Einstein condensates
收藏 引用
The Innovation 2024年 第1期5卷 41-48页
作者: Jianyuan Yin Zhen Huang Yongyong Cai Qiang Du Lei Zhang School of Mathematical Sciences Laboratory of Mathematics and Applied MathematicsPeking UniversityBeijing 100871China Department of Mathematics National University of SingaporeSingapore 119076Singapore Department of Mathematics University of CaliforniaBerkeleyBerkeleyCA 94720USA School of Mathematical Sciences Beijing Normal UniversityBeijing 100875China Department of Applied Physics and Applied Mathematics and Data Science Institute Columbia UniversityNew YorkNY 10027USA Beijing International Center for Mathematical Research Center for Quantitative BiologyCenter for Machine Learning ResearchPeking UniversityBeijing 100871China
Rotational Bose-Einstein condensates can exhibit quantized vortices as topological *** this study,the ground and excited states of the rotational Bose-Einstein condensates are systematically studied by calculating the... 详细信息
来源: 评论
Regularity and positivity of solutions of the Consensus-Based Optimization equation: unconditional global convergence
arXiv
收藏 引用
arXiv 2025年
作者: Fornasier, Massimo Sun, Lukang Technical University of Munich School of Computation Information and Technology Department of Mathematics Munich Germany Munich Center for Machine Learning Munich Germany Munich Data Science Institute Germany
Introduced in 2017 [28], Consensus-Based Optimization (CBO) has rapidly emerged as a significant breakthrough in global optimization. This straightforward yet powerful multi-particle, zero-order optimization method dr... 详细信息
来源: 评论
Hierarchical Multiview Top-k Pooling with Deep-Q-Networks
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2024年 第6期5卷 2985-2996页
作者: Li, Zhi-Peng Su, Hai-Long Wu, Yong- Zhang, Qin-Hu Yuan, Chang-An Gribova, Valeriya Filaretov, Vladimir Fedorovich Huang, De-Shuang Eastern Institute of Technology Zhejiang Ningbo315201 China University of Science and Technology of China School of Life Sciences Anhui Hefei230026 China Tongji University Institute of Machine Learning and Systems Biology School of Electronics and Information Engineering Shanghai201804 China Guangxi Academy of Sciences Institute of Big Data and Intelligent Computing Research Center Nanning530007 China Far Eastern Branch of the Russian Academy of Sciences Institute of Automation and Control Processes Vladivostok690041 Russia
Graph neural networks (GNNs) are extensions of deep neural networks to graph-structured data. It has already attracted widespread attention for various tasks such as node classification and link prediction. Existing r... 详细信息
来源: 评论
Towards Highly Efficient Anomaly Detection for Predictive Maintenance
Towards Highly Efficient Anomaly Detection for Predictive Ma...
收藏 引用
International Conference on machine learning and Applications (ICMLA)
作者: Simon Klüttermann Vanlal Peka Philipp Doebler Emmanuel Müller TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany Research Center Trustworthy Data Science and Security Dortmund Germany
This paper introduces SEAN, a novel anomaly detection algorithm designed for real-time applications in predictive maintenance. SEAN leverages an ensemble-based approach to deliver competitive performance while drastic... 详细信息
来源: 评论
SiriusBI: Building End-to-End Business Intelligence Enhanced by Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Jiang, Jie Xie, Haining Shen, Yu Zhang, Zihan Lei, Meng Zheng, Yifeng Fang, Yide Li, Chunyou Huang, Danqing Zhang, Wentao Li, Yang Yang, Xiaofeng Cui, Bin Chen, Peng Department of Data Platform TEG Tencent Inc. China School of Computer Science Peking University China Center of Machine Learning Research Peking University China
The rapid advancement of AI technologies, particularly Large Language Models (LLMs), is establishing a new paradigm for Business Intelligence (BI). Despite the emergence of pioneering work in enhancing BI systems with... 详细信息
来源: 评论
Design and Implementation of a data Governance Framework and Platform: A Case Study of a National Research Organization of Thailand  20
Design and Implementation of a Data Governance Framework and...
收藏 引用
20th International Joint Conference on Computer science and Software Engineering, JCSSE 2023
作者: Chanyachatchawan, Sapa Nasingkun, Krich Tumsangthong, Patipat Chata, Porntiwa Buranarach, Marut Socharoentum, Monsak National Electronics and Computer Technology Center Leveraging Technology Solutions Section Bangkok Thailand National Electronics and Computer Technology Center Strategic Analytics Networks with Machine Learning and Ai Research Bangkok Thailand National Electronics and Computer Technology Center Data Science and Analytics Research Group Bangkok Thailand Digital Government Development Agency Bangkok Thailand
In the current era of extensive data usage across industries, data collection, preservation, utilization, and organization has become more challenging and nuanced because it is necessary to consider critical concerns ... 详细信息
来源: 评论
NC-ALG: Graph-Based Active learning under Noisy Crowd  40
NC-ALG: Graph-Based Active Learning under Noisy Crowd
收藏 引用
40th IEEE International Conference on data Engineering, ICDE 2024
作者: Zhang, Wentao Wang, Yexin You, Zhenbang Li, Yang Cao, Gang Yang, Zhi Cui, Bin Center for Machine Learning Research Peking University China Key Lab of High Confidence Software Technologies Peking University China Institute of Advanced Algorithms Research Shanghai China Institute of Computational Social Science Peking University Qingdao China National Engineering Labratory for Big Data Analytics and Applications China TEG Tencent Inc. Department of Data Platform China Beijing Academy of Artificial Intelligence China
Graph Neural Networks (GNNs) have achieved great success in various data mining tasks but they heavily rely on a large number of annotated nodes, requiring considerable human efforts. Despite the effectiveness of exis... 详细信息
来源: 评论
Digital Halftoning via Mixed-Order Weighted Σ∆ Modulation
Digital Halftoning via Mixed-Order Weighted Σ∆ Modulation
收藏 引用
International Conference on Sampling Theory and Applications (SampTA)
作者: Felix Krahmer Anna Veselovska Dept. of Mathematics & Munich Data Science Institute Technical University of Munich and Munich Center for Machine Learning Garching/Munich Germany
In this paper, we propose 1-bit weighted Σ∆ quantization schemes of mixed order as a technique for digital halftoning. These schemes combine weighted Σ∆ schemes of different orders for two-dimensional signals so one...
来源: 评论
CUTE: Measuring LLMs' Understanding of Their Tokens
arXiv
收藏 引用
arXiv 2024年
作者: Edman, Lukas Schmid, Helmut Fraser, Alexander Center for Information and Language Processing LMU Munich Germany School of Computation Information and Technology TU Munich Germany Munich Center for Machine Learning Germany Munich Data Science Institute Germany
Large Language Models (LLMs) show remarkable performance on a wide variety of tasks. Most LLMs split text into multi-character tokens and process them as atomic units without direct access to individual characters. Th...
来源: 评论
BIM: Improving Graph Neural Networks with Balanced Influence Maximization  40
BIM: Improving Graph Neural Networks with Balanced Influence...
收藏 引用
40th IEEE International Conference on data Engineering, ICDE 2024
作者: Zhang, Wentao Gao, Xinyi Yang, Ling Cao, Meng Huang, Ping Shan, Jiulong Yin, Hongzhi Cui, Bin Peking University Center for Machine Learning Research China Institute of Advanced Algorithms Research Shanghai China National Engineering Labratory for Big Data Analytics and Applications The University of Queensland Australia Peking University Key Lab of High Confidence Software Technologies China Apple Inc. Institute of Computational Social Science Peking University Qingdao China
The imbalanced data classification problem has aroused lots of concerns from both academia and industry since data imbalance is a widespread phenomenon in many real-world scenarios. Although this problem has been well... 详细信息
来源: 评论