咨询与建议

限定检索结果

文献类型

  • 257 篇 期刊文献
  • 110 篇 会议
  • 1 册 图书

馆藏范围

  • 368 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 233 篇 工学
    • 150 篇 计算机科学与技术...
    • 126 篇 软件工程
    • 61 篇 生物工程
    • 40 篇 信息与通信工程
    • 39 篇 生物医学工程(可授...
    • 33 篇 控制科学与工程
    • 24 篇 光学工程
    • 19 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 建筑学
    • 13 篇 土木工程
    • 13 篇 安全科学与工程
    • 10 篇 机械工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 仪器科学与技术
  • 176 篇 理学
    • 89 篇 数学
    • 66 篇 生物学
    • 48 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 14 篇 地球物理学
    • 11 篇 化学
  • 63 篇 管理学
    • 34 篇 图书情报与档案管...
    • 30 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 28 篇 医学
    • 25 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 7 篇 农学
  • 6 篇 法学
  • 5 篇 教育学
  • 1 篇 文学

主题

  • 15 篇 machine learning
  • 14 篇 deep learning
  • 12 篇 accuracy
  • 11 篇 image segmentati...
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 data mining
  • 4 篇 cosmology
  • 4 篇 metadata

机构

  • 37 篇 center for data ...
  • 34 篇 center for machi...
  • 33 篇 munich center fo...
  • 16 篇 munich center fo...
  • 13 篇 munich data scie...
  • 12 篇 beijing internat...
  • 9 篇 national enginee...
  • 9 篇 national biomedi...
  • 9 篇 school of mathem...
  • 8 篇 peking universit...
  • 7 篇 munich data scie...
  • 7 篇 mdsi – munich da...
  • 7 篇 mcml – munich ce...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich data scie...
  • 6 篇 peking universit...

作者

  • 19 篇 zhu xiao xiang
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 8 篇 zifan chen
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 7 篇 shi yilei
  • 6 篇 li hongwei bran
  • 6 篇 linguraru marius...
  • 6 篇 dong bin
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...
  • 6 篇 wu lei
  • 6 篇 milling manuel
  • 5 篇 bakas spyridon

语言

  • 320 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Science Center"
368 条 记 录,以下是71-80 订阅
排序:
Bounding the number of reticulation events for displaying multiple trees in a phylogenetic network
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Yufeng Zhang, Louxin School of Computing University of Connecticut StorrsCT06269 United States Department of Mathematics Center for Data Science and Machine Learning National University of Singapore Singapore119076 Singapore
Reconstructing a parsimonious phylogenetic network that displays multiple phylogenetic trees is an important problem in phylogenetics, where the complexity of the inferred networks is measured by reticulation numbers.... 详细信息
来源: 评论
A Minimax Optimal Control Approach for Robust Neural ODEs
A Minimax Optimal Control Approach for Robust Neural ODEs
收藏 引用
European Control Conference (ECC)
作者: Cristina Cipriani Alessandro Scagliotti Tobias Wöhrer Department of Mathematics Technical University Munich (TUM) Munich Germany Munich Data Science Institute (MDSI) Munich Germany Munich Center for Machine Learning (MCML) Munich Germany
In this paper, we address the adversarial training of neural ODEs from a robust control perspective. This is an alternative to the classical training via empirical risk minimization, and it is widely used to enforce r... 详细信息
来源: 评论
A REDUCTION-BASED FRAMEWORK FOR CONSERVATIVE BANDITS AND REINFORCEMENT learning  10
A REDUCTION-BASED FRAMEWORK FOR CONSERVATIVE BANDITS AND REI...
收藏 引用
10th International Conference on learning Representations, ICLR 2022
作者: Yang, Yunchang Wu, Tianhao Zhong, Han Garcelon, Evrard Pirotta, Matteo Lazaric, Alessandro Wang, Liwei Du, Simon S. Center for Data Science Peking University China University of California Berkeley United States Facebook AI Research Key Laboratory of Machine Perception MOE School of Artificial Intelligence Peking University China International Center for Machine Learning Research Peking University China University of Washington United States
We study bandits and reinforcement learning (RL) subject to a conservative constraint where the agent is asked to perform at least as well as a given baseline policy. This setting is particular relevant in real-world ... 详细信息
来源: 评论
Decoupling Common and Unique Representations for Multimodal Self-supervised learning
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Yi Albrecht, Conrad M. Braham, Nassim Ait Ali Liu, Chenying Xiong, Zhitong Zhu, Xiao Xiang Data Science in Earth Observation Technical University of Munich Germany Remote Sensing Technology Institute German Aerospace Center Germany Munich Center for Machine Learning Germany
The increasing availability of multi-sensor data sparks wide interest in multimodal self-supervised learning. However, most existing approaches learn only common representations across modalities while ignoring intra-... 详细信息
来源: 评论
Optimal bounds for p sensitivity sampling via 2 augmentation
arXiv
收藏 引用
arXiv 2024年
作者: Munteanu, Alexander Omlor, Simon Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics and Lamarr Institute for Machine Learning and Artificial Intelligence TU Dortmund University Dortmund Germany
data subsampling is one of the most natural methods to approximate a massively large data set by a small representative proxy. In particular, sensitivity sampling received a lot of attention, which samples points prop... 详细信息
来源: 评论
Turnstile p leverage score sampling with applications
arXiv
收藏 引用
arXiv 2024年
作者: Munteanu, Alexander Omlor, Simon Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics and Lamarr Institute for Machine Learning and Artificial Intelligence TU Dortmund University Dortmund Germany
The turnstile data stream model offers the most flexible framework where data can be manipulated dynamically, i.e., rows, columns, and even single entries of an input matrix can be added, deleted, or updated multiple ... 详细信息
来源: 评论
Contrastive learning for Adapting Language Model to Sequential Recommendation  24
Contrastive Learning for Adapting Language Model to Sequenti...
收藏 引用
24th IEEE International Conference on data Mining, ICDM 2024
作者: Liang, Fei-Yao Xi, Wu-Dong Xing, Xing-Xing Wan, Wei Wang, Chang-Dong Chen, Min Guizani, Mohsen School of Computer Science and Engineering Sun Yat-sen University Guangzhou China NetEase Games China UX Center NetEase Games Guangzhou China Guangdong Provincial Key Laboratory of Intellectual Property and Big Data Guangzhou China School of Computer Science and Engineering South China University of Technology Guangzhou China Pazhou Laboratory Guangzhou China Machine Learning Department Abu Dhabi United Arab Emirates
With the explosive growth of information, recommendation systems have emerged to alleviate the problem of information overload. In order to improve the performance of recommendation systems, many existing methods intr... 详细信息
来源: 评论
The challenges of the nonlinear regime for physics-informed neural networks  24
The challenges of the nonlinear regime for physics-informed ...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Andrea Bonfanti Giuseppe Bruno Cristina Cipriani BMW AG Digital Campus Munich Basque Center for Applied Mathematics University of the Basque Country BMW AG Digital Campus Munich Technical University of Munich Munich Center for Machine Learning Munich Data Science Institute
The Neural Tangent Kernel (NTK) viewpoint is widely employed to analyze the training dynamics of overparameterized Physics-Informed Neural Networks (PINNs). However, unlike the case of linear Partial Differential Equa...
来源: 评论
RecCoder: Reformulating Sequential Recommendation as Large Language Model-Based Code Completion  24
RecCoder: Reformulating Sequential Recommendation as Large L...
收藏 引用
24th IEEE International Conference on data Mining, ICDM 2024
作者: Lai, Kai-Huang Xi, Wu-Dong Xing, Xing-Xing Wan, Wei Wang, Chang-Dong Chen, Min Guizani, Mohsen School of Computer Science and Engineering Sun Yat-sen University Guangzhou China NetEase Games China UX Center NetEase Games Guangzhou China Guangdong Provincial Key Laboratory of Intellectual Property and Big Data Guangzhou China School of Computer Science and Engineering South China University of Technology Guangzhou China Pazhou Laboratory Guangzhou China Machine Learning Department Abu Dhabi United Arab Emirates
In the evolving landscape of sequential recommendation systems, the application of Large Language Models (LLMs) is increasingly prominent. However, current attempts typically utilize general-purpose LLMs, which presen... 详细信息
来源: 评论
CASSPR: Cross Attention Single Scan Place Recognition
CASSPR: Cross Attention Single Scan Place Recognition
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Yan Xia Mariia Gladkova Rui Wang Qianyun Li Uwe Stilla João F. Henriques Daniel Cremers Technical University of Munich Munich Center for Machine Learning (MCML) Visual Geometry Group University of Oxford Munich Data Science Institute Microsoft Zurich
Place recognition based on point clouds (LiDAR) is an important component for autonomous robots or self-driving vehicles. Current SOTA performance is achieved on accumulated LiDAR submaps using either point-based or v...
来源: 评论