咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 20 篇 会议

馆藏范围

  • 40 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 24 篇 理学
    • 23 篇 物理学
    • 8 篇 数学
    • 7 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 科学技术史(分学科...
  • 23 篇 工学
    • 17 篇 计算机科学与技术...
    • 15 篇 软件工程
    • 8 篇 信息与通信工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 机械工程
    • 2 篇 化学工程与技术
    • 1 篇 控制科学与工程
    • 1 篇 生物医学工程(可授...
  • 2 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 2 篇 管理学
    • 2 篇 图书情报与档案管...
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 历史学
    • 1 篇 世界史
  • 1 篇 艺术学
    • 1 篇 艺术学理论
    • 1 篇 音乐与舞蹈学

主题

  • 11 篇 speech recogniti...
  • 5 篇 hidden markov mo...
  • 5 篇 data models
  • 4 篇 speech processin...
  • 4 篇 training
  • 3 篇 training data
  • 3 篇 signal processin...
  • 2 篇 conferences
  • 2 篇 modeling languag...
  • 2 篇 telephone sets
  • 2 篇 bayes methods
  • 2 篇 machine learning
  • 2 篇 transducers
  • 1 篇 reliability
  • 1 篇 reproducibility
  • 1 篇 reverberation
  • 1 篇 music informatio...
  • 1 篇 factored hybrid ...
  • 1 篇 reporting practi...
  • 1 篇 reporting standa...

机构

  • 19 篇 apptek gmbh
  • 12 篇 apptek gmbh aach...
  • 10 篇 machine learning...
  • 5 篇 apptek gmbh aach...
  • 4 篇 machine learning...
  • 3 篇 machine learning...
  • 3 篇 paderborn univer...
  • 2 篇 computer science...
  • 2 篇 machine learning...
  • 2 篇 machine learning...
  • 2 篇 rwth aachen univ...
  • 2 篇 machine learning...
  • 1 篇 kenvak research ...
  • 1 篇 comparative cogn...
  • 1 篇 machine learning...
  • 1 篇 rwth aachen univ...
  • 1 篇 tauchi research ...
  • 1 篇 computer science...
  • 1 篇 school of optome...
  • 1 篇 the university o...

作者

  • 21 篇 schlüter ralf
  • 19 篇 ney hermann
  • 9 篇 ralf schlüter
  • 8 篇 raissi tina
  • 8 篇 yang zijian
  • 7 篇 hermann ney
  • 6 篇 vieting peter
  • 6 篇 lüscher christop...
  • 4 篇 berger simon
  • 4 篇 zijian yang
  • 4 篇 xu jingjing
  • 4 篇 zeineldeen moham...
  • 4 篇 zhou wei
  • 4 篇 thulke david
  • 3 篇 schluter ralf
  • 3 篇 beck eugen
  • 3 篇 le-duc khai
  • 2 篇 gao yingbo
  • 2 篇 mann daniel
  • 2 篇 haeb-umbach rein...

语言

  • 36 篇 英文
  • 4 篇 其他
检索条件"机构=Machine Learning and Human Language Technology"
40 条 记 录,以下是1-10 订阅
排序:
Leveraging Cross-Lingual Transfer learning in Spoken Named Entity Recognition Systems  20
Leveraging Cross-Lingual Transfer Learning in Spoken Named E...
收藏 引用
20th Conference on Natural language Processing, KONVENS 2024
作者: Benaicha, Moncef Thulke, David Tuğtekin Turan, M.A. Germany Machine Learning and Human Language Technology RWTH Aachen University Germany
Recent Named Entity Recognition (NER) advancements have significantly enhanced text classification capabilities. This paper focuses on spoken NER, aimed explicitly at spoken document retrieval, an area not widely stud... 详细信息
来源: 评论
Right Label Context in End-to-End Training of Time-Synchronous ASR Models
Right Label Context in End-to-End Training of Time-Synchrono...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Raissi, Tina Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology Group RWTH Aachen University Germany AppTek GmbH Germany
Current time-synchronous sequence-to-sequence automatic speech recognition (ASR) models are trained by using sequence level cross-entropy that sums over all alignments. Due to the discriminative formulation, incorpora... 详细信息
来源: 评论
Prompting and Fine-Tuning of Small LLMs for Length-Controllable Telephone Call Summarization  2
Prompting and Fine-Tuning of Small LLMs for Length-Controlla...
收藏 引用
2nd International Conference on Foundation and Large language Models, FLLM 2024
作者: Thulke, David Gao, Yingbo Jalota, Rricha Dugast, Christian Ney, Hermann AppTek GmbH Aachen Germany RWTH Aachen University Machine Learning and Human Language Technology Group Germany
This paper explores the rapid development of a telephone call summarization system utilizing large language models (LLMs). Our approach involves initial experiments with prompting existing LLMs to generate summaries o... 详细信息
来源: 评论
Comparative Analysis of the wav2vec 2.0 Feature Extractor  15
Comparative Analysis of the wav2vec 2.0 Feature Extractor
收藏 引用
15th ITG Conference on Speech Communication
作者: Vieting, Peter Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology RWTH Aachen University Germany AppTek GmbH Germany
Automatic speech recognition (ASR) systems typically use handcrafted feature extraction pipelines. To avoid their inherent information loss and to achieve more consistent modeling from speech to transcribed text, neur... 详细信息
来源: 评论
On the Relevance of Phoneme Duration Variability of Synthesized Training Data for Automatic Speech Recognition
On the Relevance of Phoneme Duration Variability of Synthesi...
收藏 引用
2023 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2023
作者: Rossenbach, Nick Hilmes, Benedikt Schluter, Ralf Rwth Aachen University Machine Learning and Human Language Technology Computer Science Departement Germany AppTek GmbH Germany
Synthetic data generated by text-to-speech (TTS) systems can be used to improve automatic speech recognition (ASR) systems in low-resource or domain mismatch tasks. It has been shown that TTS-generated outputs still d... 详细信息
来源: 评论
Analyzing And Improving Neural Speaker Embeddings for ASR  15
Analyzing And Improving Neural Speaker Embeddings for ASR
收藏 引用
15th ITG Conference on Speech Communication
作者: Lüscher, Christoph Xu, Jingjing Zeineldeen, Mohammad Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Neural speaker embeddings encode the speaker’s speech characteristics through a DNN model and are prevalent for speaker verification tasks. However, only a few inconclusive studies have investigated the usage of neur... 详细信息
来源: 评论
Development of Hybrid ASR Systems for Low Resource Medical Domain Conversational Telephone Speech  15
Development of Hybrid ASR Systems for Low Resource Medical D...
收藏 引用
15th ITG Conference on Speech Communication
作者: Lüscher, Christoph Zeineldeen, Mohammad Yang, Zijian Raissi, Tina Vieting, Peter Le-Duc, Khai Wang, Weiyue Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology RWTH Aachen University Aachen52072 Germany AppTek GmbH Aachen52062 Germany
language barriers present a great challenge in our increasingly connected and global world. Especially within the medical domain, e.g. hospital or emergency room, communication difficulties, and delays may lead to mal... 详细信息
来源: 评论
End-To-End Training of a Neural HMM with Label and Transition Probabilities
End-To-End Training of a Neural HMM with Label and Transitio...
收藏 引用
2023 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2023
作者: Mann, Daniel Raissi, Tina Michel, Wilfried Schluter, Ralf Ney, Hermann AppTek GmbH Aachen52062 Germany Rwth Aachen University Machine Learning and Human Language Technology Computer Science Department Aachen52074 Germany
We investigate a novel modeling approach for end-to-end neural network training using hidden Markov models (HMM) where the transition probabilities between hidden states are modeled and learned explicitly. Most contem... 详细信息
来源: 评论
Investigating The Effect of language Models in Sequence Discriminative Training For Neural Transducers
Investigating The Effect of Language Models in Sequence Disc...
收藏 引用
2023 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2023
作者: Yang, Zijian Zhou, Wei Schluter, Ralf Ney, Hermann Rwth Aachen University Machine Learning and Human Language Technology Computer Science Department Aachen52074 Germany AppTek GmbH Aachen52062 Germany
In this work, we investigate the effect of language models (LMs) with different context lengths and label units (phoneme vs. word) used in sequence discriminative training for phoneme-based neural transducers. Both la... 详细信息
来源: 评论
Right Label Context in End-to-End Training of Time-Synchronous ASR Models
Right Label Context in End-to-End Training of Time-Synchrono...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Tina Raissi Ralf Schlüter Hermann Ney Machine Learning and Human Language Technology Group RWTH Aachen University AppTek GmbH Germany
Current time-synchronous sequence-to-sequence automatic speech recognition (ASR) models are trained by using sequence level cross-entropy that sums over all alignments. Due to the discriminative formulation, incorpora... 详细信息
来源: 评论