咨询与建议

限定检索结果

文献类型

  • 35 篇 期刊文献
  • 25 篇 会议

馆藏范围

  • 60 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 38 篇 工学
    • 28 篇 计算机科学与技术...
    • 25 篇 软件工程
    • 9 篇 信息与通信工程
    • 6 篇 电气工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 电子科学与技术(可...
    • 3 篇 光学工程
    • 2 篇 机械工程
    • 2 篇 化学工程与技术
    • 1 篇 控制科学与工程
    • 1 篇 生物工程
    • 1 篇 安全科学与工程
  • 32 篇 理学
    • 26 篇 物理学
    • 14 篇 数学
    • 10 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 生物学
    • 1 篇 科学技术史(分学科...
  • 10 篇 管理学
    • 7 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 公共管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
    • 1 篇 药学(可授医学、理...
  • 2 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 历史学
    • 1 篇 世界史
  • 1 篇 艺术学

主题

  • 11 篇 speech recogniti...
  • 5 篇 hidden markov mo...
  • 5 篇 data models
  • 4 篇 speech processin...
  • 4 篇 training
  • 3 篇 training data
  • 3 篇 signal processin...
  • 2 篇 conferences
  • 2 篇 modeling languag...
  • 2 篇 zero-shot learni...
  • 2 篇 telephone sets
  • 2 篇 bayes methods
  • 2 篇 machine learning
  • 2 篇 transducers
  • 1 篇 reliability
  • 1 篇 reproducibility
  • 1 篇 function evaluat...
  • 1 篇 clustering
  • 1 篇 reverberation
  • 1 篇 deep learning

机构

  • 18 篇 apptek gmbh
  • 12 篇 apptek gmbh aach...
  • 10 篇 machine learning...
  • 5 篇 apptek gmbh aach...
  • 4 篇 machine learning...
  • 4 篇 machine learning...
  • 4 篇 language technol...
  • 3 篇 paderborn univer...
  • 2 篇 department of ma...
  • 2 篇 computer science...
  • 2 篇 department of qu...
  • 2 篇 department of in...
  • 2 篇 machine learning...
  • 2 篇 machine learning...
  • 2 篇 diagnostic image...
  • 2 篇 machine learning...
  • 2 篇 machine learning...
  • 1 篇 kenvak research ...
  • 1 篇 department of ra...
  • 1 篇 public health un...

作者

  • 21 篇 schlüter ralf
  • 18 篇 ney hermann
  • 9 篇 ralf schlüter
  • 8 篇 raissi tina
  • 8 篇 yang zijian
  • 6 篇 hermann ney
  • 6 篇 vieting peter
  • 6 篇 lüscher christop...
  • 4 篇 vulić ivan
  • 4 篇 berger simon
  • 4 篇 zijian yang
  • 4 篇 xu jingjing
  • 4 篇 zeineldeen moham...
  • 4 篇 wan xingchen
  • 4 篇 zhou han
  • 4 篇 korhonen anna
  • 3 篇 schluter ralf
  • 3 篇 beck eugen
  • 3 篇 le-duc khai
  • 3 篇 zhou wei

语言

  • 55 篇 英文
  • 5 篇 其他
检索条件"机构=Machine Learning and Human Language Technology Group"
60 条 记 录,以下是1-10 订阅
排序:
Right Label Context in End-to-End Training of Time-Synchronous ASR Models
Right Label Context in End-to-End Training of Time-Synchrono...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Raissi, Tina Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology Group RWTH Aachen University Germany AppTek GmbH Germany
Current time-synchronous sequence-to-sequence automatic speech recognition (ASR) models are trained by using sequence level cross-entropy that sums over all alignments. Due to the discriminative formulation, incorpora... 详细信息
来源: 评论
Right Label Context in End-to-End Training of Time-Synchronous ASR Models
Right Label Context in End-to-End Training of Time-Synchrono...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Tina Raissi Ralf Schlüter Hermann Ney Machine Learning and Human Language Technology Group RWTH Aachen University AppTek GmbH Germany
Current time-synchronous sequence-to-sequence automatic speech recognition (ASR) models are trained by using sequence level cross-entropy that sums over all alignments. Due to the discriminative formulation, incorpora... 详细信息
来源: 评论
Efficient Supernet Training with Orthogonal Softmax for Scalable ASR Model Compression
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Jingjing Beck, Eugen Yang, Zijian Schlüter, Ralf Machine Learning and Human Language Technology Group RWTH Aachen University Germany AppTek GmbH Germany
ASR systems are deployed across diverse environments, each with specific hardware constraints. We use supernet training to jointly train multiple encoders of varying sizes, enabling dynamic model size adjustment to fi... 详细信息
来源: 评论
Efficient Supernet Training with Orthogonal Softmax for Scalable ASR Model Compression
Efficient Supernet Training with Orthogonal Softmax for Scal...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Jingjing Xu Eugen Beck Zijian Yang Ralf Schlüter Machine Learning and Human Language Technology Group RWTH Aachen University Germany AppTek GmbH Germany
ASR systems are deployed across diverse environments, each with specific hardware constraints. We use supernet training to jointly train multiple encoders of varying sizes, enabling dynamic model size adjustment to fi... 详细信息
来源: 评论
Right Label Context in End-to-End Training of Time-Synchronous ASR Models
arXiv
收藏 引用
arXiv 2025年
作者: Raissi, Tina Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology Group RWTH Aachen University Germany AppTek GmbH Germany
Current time-synchronous sequence-to-sequence automatic speech recognition (ASR) models are trained by using sequence level cross-entropy that sums over all alignments. Due to the discriminative formulation, incorpora... 详细信息
来源: 评论
Classification Error Bound for Low Bayes Error Conditions in machine learning
arXiv
收藏 引用
arXiv 2025年
作者: Yang, Zijian Eminyan, Vahe Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology Group Lehrstuhl Informatik 6 Computer Science Department RWTH Aachen University Germany AppTek GmbH Germany
In statistical classification and machine learning, classification error is an important performance measure, which is minimized by the Bayes decision rule. In practice, the unknown true distribution is usually replac... 详细信息
来源: 评论
Classification Error Bound for Low Bayes Error Conditions in machine learning
Classification Error Bound for Low Bayes Error Conditions in...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Zijian Yang Vahe Eminyan Ralf Schlüter Hermann Ney Computer Science Department Machine Learning and Human Language Technology Group Lehrstuhl Informatik 6 RWTH Aachen University Germany AppTek GmbH Germany
In statistical classification and machine learning, classification error is an important performance measure, which is minimized by the Bayes decision rule. In practice, the unknown true distribution is usually replac... 详细信息
来源: 评论
Unsupervised Domain-Adaptive Semantic Segmentation for Surgical Instruments Leveraging Dropout-Enhanced Dual Heads and Coarse-Grained Classification Branch
IEEE Transactions on Medical Robotics and Bionics
收藏 引用
IEEE Transactions on Medical Robotics and Bionics 2025年
作者: Li, Ziqian Wang, Zhengyu Xu, Xinzhou Chen, Yongfa Schuller, Bjorn W. Hefei University of Technology School of Mechanical Engineering Hefei China Nanjing University of Posts and Telecommunications School of Internet of Things Nanjing China Graz University of Technology Signal Processing and Speech Communication Laboratory Graz Austria Chair of Health Informatics Munich Germany Munich Data Science Institute Munich Germany Munich Center for Machine Learning Munich Germany Imperial College London GLAM – the Group on Language Audio and Music London United Kingdom
Accurate semantic segmentation for surgical instruments is crucial in robot-assisted minimally invasive surgery, mainly regarded as a core module in surgical-instrument tracking and operation guidance. Nevertheless, i... 详细信息
来源: 评论
Prompting and Fine-Tuning of Small LLMs for Length-Controllable Telephone Call Summarization  2
Prompting and Fine-Tuning of Small LLMs for Length-Controlla...
收藏 引用
2nd International Conference on Foundation and Large language Models, FLLM 2024
作者: Thulke, David Gao, Yingbo Jalota, Rricha Dugast, Christian Ney, Hermann AppTek GmbH Aachen Germany RWTH Aachen University Machine Learning and Human Language Technology Group Germany
This paper explores the rapid development of a telephone call summarization system utilizing large language models (LLMs). Our approach involves initial experiments with prompting existing LLMs to generate summaries o... 详细信息
来源: 评论
Leveraging Cross-Lingual Transfer learning in Spoken Named Entity Recognition Systems  20
Leveraging Cross-Lingual Transfer Learning in Spoken Named E...
收藏 引用
20th Conference on Natural language Processing, KONVENS 2024
作者: Benaicha, Moncef Thulke, David Tuğtekin Turan, M.A. Germany Machine Learning and Human Language Technology RWTH Aachen University Germany
Recent Named Entity Recognition (NER) advancements have significantly enhanced text classification capabilities. This paper focuses on spoken NER, aimed explicitly at spoken document retrieval, an area not widely stud... 详细信息
来源: 评论