咨询与建议

限定检索结果

文献类型

  • 35 篇 期刊文献
  • 25 篇 会议

馆藏范围

  • 60 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 38 篇 工学
    • 28 篇 计算机科学与技术...
    • 25 篇 软件工程
    • 9 篇 信息与通信工程
    • 6 篇 电气工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 电子科学与技术(可...
    • 3 篇 光学工程
    • 2 篇 机械工程
    • 2 篇 化学工程与技术
    • 1 篇 控制科学与工程
    • 1 篇 生物工程
    • 1 篇 安全科学与工程
  • 32 篇 理学
    • 26 篇 物理学
    • 14 篇 数学
    • 10 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 生物学
    • 1 篇 科学技术史(分学科...
  • 10 篇 管理学
    • 7 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 公共管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
    • 1 篇 药学(可授医学、理...
  • 2 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 历史学
    • 1 篇 世界史
  • 1 篇 艺术学

主题

  • 11 篇 speech recogniti...
  • 5 篇 hidden markov mo...
  • 5 篇 data models
  • 4 篇 speech processin...
  • 4 篇 training
  • 3 篇 training data
  • 3 篇 signal processin...
  • 2 篇 conferences
  • 2 篇 modeling languag...
  • 2 篇 zero-shot learni...
  • 2 篇 telephone sets
  • 2 篇 bayes methods
  • 2 篇 machine learning
  • 2 篇 transducers
  • 1 篇 reliability
  • 1 篇 reproducibility
  • 1 篇 function evaluat...
  • 1 篇 clustering
  • 1 篇 reverberation
  • 1 篇 deep learning

机构

  • 18 篇 apptek gmbh
  • 12 篇 apptek gmbh aach...
  • 10 篇 machine learning...
  • 5 篇 apptek gmbh aach...
  • 4 篇 machine learning...
  • 4 篇 machine learning...
  • 4 篇 language technol...
  • 3 篇 paderborn univer...
  • 2 篇 department of ma...
  • 2 篇 computer science...
  • 2 篇 department of qu...
  • 2 篇 department of in...
  • 2 篇 machine learning...
  • 2 篇 machine learning...
  • 2 篇 diagnostic image...
  • 2 篇 machine learning...
  • 2 篇 rwth aachen univ...
  • 2 篇 machine learning...
  • 1 篇 kenvak research ...
  • 1 篇 department of ra...

作者

  • 21 篇 schlüter ralf
  • 19 篇 ney hermann
  • 9 篇 ralf schlüter
  • 8 篇 raissi tina
  • 8 篇 yang zijian
  • 6 篇 hermann ney
  • 6 篇 vieting peter
  • 6 篇 lüscher christop...
  • 4 篇 vulić ivan
  • 4 篇 berger simon
  • 4 篇 zijian yang
  • 4 篇 xu jingjing
  • 4 篇 zeineldeen moham...
  • 4 篇 wan xingchen
  • 4 篇 zhou han
  • 4 篇 korhonen anna
  • 4 篇 zhou wei
  • 3 篇 schluter ralf
  • 3 篇 beck eugen
  • 3 篇 le-duc khai

语言

  • 55 篇 英文
  • 5 篇 其他
检索条件"机构=Machine Learning and Human Language Technology Group"
60 条 记 录,以下是11-20 订阅
排序:
Comparative Analysis of the wav2vec 2.0 Feature Extractor  15
Comparative Analysis of the wav2vec 2.0 Feature Extractor
收藏 引用
15th ITG Conference on Speech Communication
作者: Vieting, Peter Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology RWTH Aachen University Germany AppTek GmbH Germany
Automatic speech recognition (ASR) systems typically use handcrafted feature extraction pipelines. To avoid their inherent information loss and to achieve more consistent modeling from speech to transcribed text, neur... 详细信息
来源: 评论
On the Relevance of Phoneme Duration Variability of Synthesized Training Data for Automatic Speech Recognition
On the Relevance of Phoneme Duration Variability of Synthesi...
收藏 引用
2023 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2023
作者: Rossenbach, Nick Hilmes, Benedikt Schluter, Ralf Rwth Aachen University Machine Learning and Human Language Technology Computer Science Departement Germany AppTek GmbH Germany
Synthetic data generated by text-to-speech (TTS) systems can be used to improve automatic speech recognition (ASR) systems in low-resource or domain mismatch tasks. It has been shown that TTS-generated outputs still d... 详细信息
来源: 评论
Fairer Preferences Elicit Improved human-Aligned Large language Model Judgments
Fairer Preferences Elicit Improved Human-Aligned Large Langu...
收藏 引用
2024 Conference on Empirical Methods in Natural language Processing, EMNLP 2024
作者: Zhou, Han Wan, Xingchen Liu, Yinhong Collier, Nigel Vulić, Ivan Korhonen, Anna Language Technology Lab University of Cambridge United Kingdom Machine Learning Research Group University of Oxford United Kingdom
Large language models (LLMs) have shown promising abilities as cost-effective and reference-free evaluators for assessing language generation quality. In particular, pairwise LLM evaluators, which compare two generate... 详细信息
来源: 评论
Analyzing And Improving Neural Speaker Embeddings for ASR  15
Analyzing And Improving Neural Speaker Embeddings for ASR
收藏 引用
15th ITG Conference on Speech Communication
作者: Lüscher, Christoph Xu, Jingjing Zeineldeen, Mohammad Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Neural speaker embeddings encode the speaker’s speech characteristics through a DNN model and are prevalent for speaker verification tasks. However, only a few inconclusive studies have investigated the usage of neur... 详细信息
来源: 评论
Development of Hybrid ASR Systems for Low Resource Medical Domain Conversational Telephone Speech  15
Development of Hybrid ASR Systems for Low Resource Medical D...
收藏 引用
15th ITG Conference on Speech Communication
作者: Lüscher, Christoph Zeineldeen, Mohammad Yang, Zijian Raissi, Tina Vieting, Peter Le-Duc, Khai Wang, Weiyue Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology RWTH Aachen University Aachen52072 Germany AppTek GmbH Aachen52062 Germany
language barriers present a great challenge in our increasingly connected and global world. Especially within the medical domain, e.g. hospital or emergency room, communication difficulties, and delays may lead to mal... 详细信息
来源: 评论
End-To-End Training of a Neural HMM with Label and Transition Probabilities
End-To-End Training of a Neural HMM with Label and Transitio...
收藏 引用
2023 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2023
作者: Mann, Daniel Raissi, Tina Michel, Wilfried Schluter, Ralf Ney, Hermann AppTek GmbH Aachen52062 Germany Rwth Aachen University Machine Learning and Human Language Technology Computer Science Department Aachen52074 Germany
We investigate a novel modeling approach for end-to-end neural network training using hidden Markov models (HMM) where the transition probabilities between hidden states are modeled and learned explicitly. Most contem... 详细信息
来源: 评论
Investigating The Effect of language Models in Sequence Discriminative Training For Neural Transducers
Investigating The Effect of Language Models in Sequence Disc...
收藏 引用
2023 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2023
作者: Yang, Zijian Zhou, Wei Schluter, Ralf Ney, Hermann Rwth Aachen University Machine Learning and Human Language Technology Computer Science Department Aachen52074 Germany AppTek GmbH Aachen52062 Germany
In this work, we investigate the effect of language models (LMs) with different context lengths and label units (phoneme vs. word) used in sequence discriminative training for phoneme-based neural transducers. Both la... 详细信息
来源: 评论
Prompting and Fine-Tuning of Small LLMs for Length-Controllable Telephone Call Summarization
Prompting and Fine-Tuning of Small LLMs for Length-Controlla...
收藏 引用
Foundation and Large language Models (FLLM), International Conference on
作者: David Thulke Yingbo Gao Rricha Jalota Christian Dugast Hermann Ney AppTek GmbH Aachen Machine Learning and Human Language Technology Group RWTH Aachen University
This paper explores the rapid development of a telephone call summarization system utilizing large language models (LLMs). Our approach involves initial experiments with prompting existing LLMs to generate summaries o... 详细信息
来源: 评论
Investigating the Effect of Label Topology and Training Criterion on ASR Performance and Alignment Quality
arXiv
收藏 引用
arXiv 2024年
作者: Raissi, Tina Lüscher, Christoph Berger, Simon Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology Group RWTH Aachen University Germany AppTek GmbH Germany
The ongoing research scenario for automatic speech recognition (ASR) envisions a clear division between end-to-end approaches and classic modular systems. Even though a high-level comparison between the two approaches... 详细信息
来源: 评论
Prompting and Fine-Tuning of Small LLMs for Length-Controllable Telephone Call Summarization
arXiv
收藏 引用
arXiv 2024年
作者: Thulke, David Gao, Yingbo Jalota, Rricha Dugast, Christian Ney, Hermann AppTek GmbH Aachen Germany Machine Learning and Human Language Technology Group RWTH Aachen University Germany
This paper explores the rapid development of a telephone call summarization system utilizing large language models (LLMs). Our approach involves initial experiments with prompting existing LLMs to generate summaries o... 详细信息
来源: 评论