Synthetic data generated by text-to-speech (TTS) systems can be used to improve automatic speech recognition (ASR) systems in low-resource or domain mismatch tasks. It has been shown that TTS-generated outputs still d...
详细信息
Prompt-based learning has been an effective paradigm for large pretrained language models (LLM), enabling few-shot or even zero-shot learning. Black-box prompt search has received growing interest recently for its dis...
详细信息
Large pretrained language models are widely used in downstream NLP tasks via task-specific fine-tuning, but such procedures can be costly. Recently, Parameter-Efficient Fine-Tuning (PEFT) methods have achieved strong ...
详细信息
We study a streamable attention-based encoder-decoder model in which either the decoder, or both the encoder and decoder, operate on pre-defined, fixed-size windows called chunks. A special end-of-chunk (EOC) symbol a...
We study a streamable attention-based encoder-decoder model in which either the decoder, or both the encoder and decoder, operate on pre-defined, fixed-size windows called chunks. A special end-of-chunk (EOC) symbol advances from one chunk to the next chunk, effectively replacing the conventional end-of-sequence symbol. This modification, while minor, situates our model as equivalent to a transducer model that operates on chunks instead of frames, where EOC corresponds to the blank symbol. We further explore the remaining differences between a standard transducer and our model. Additionally, we examine relevant aspects such as long-form speech generalization, beam size, and length normalization. Through experiments on Librispeech and TED-LIUM-v2, and by concatenating consecutive sequences for long-form trials, we find that our streamable model maintains competitive performance compared to the non-streamable variant and generalizes very well to long-form speech.
Synthetic data generated by text-to-speech (TTS) systems can be used to improve automatic speech recognition (ASR) systems in low-resource or domain mismatch tasks. It has been shown that TTS-generated outputs still d...
Synthetic data generated by text-to-speech (TTS) systems can be used to improve automatic speech recognition (ASR) systems in low-resource or domain mismatch tasks. It has been shown that TTS-generated outputs still do not have the same qualities as real data. In this work we focus on the temporal structure of synthetic data and its relation to ASR training. By using a novel oracle setup we show how much the degradation of synthetic data quality is influenced by duration modeling in non-autoregressive (NAR) TTS. To get reference phoneme durations we use two common alignment methods, a hidden Markov Gaussian-mixture model (HMM-GMM) aligner and a neural connectionist temporal classification (CTC) aligner. Using a simple algorithm based on random walks we shift phoneme duration distributions of the TTS system closer to real durations, resulting in an improvement of an ASR system using synthetic data in a semi-supervised setting.
Large language models (LLMs) have shown promising abilities as cost-effective and reference-free evaluators for assessing language generation quality. In particular, pairwise LLM evaluators, which compare two generate...
详细信息
Neural speaker embeddings encode the speaker's speech characteristics through a DNN model and are prevalent for speaker verification tasks. However, only a few inconclusive studies have investigated the usage of n...
详细信息
language barriers present a great challenge in our increasingly connected and global world. Especially within the medical domain, e.g. hospital or emergency room, communication difficulties, and delays may lead to mal...
详细信息
In this work, we investigate the effect of language models (LMs) with different context lengths and label units (phoneme vs. word) used in sequence discriminative training for phoneme-based neural transducers. Both la...
In this work, we investigate the effect of language models (LMs) with different context lengths and label units (phoneme vs. word) used in sequence discriminative training for phoneme-based neural transducers. Both lattice-free and N-best-list approaches are examined. For lattice-free methods with phoneme-level LMs, we propose a method to approximate the context history to employ LMs with full-context dependency. This approximation can be extended to arbitrary context length and enables the usage of word-level LMs in lattice-free methods. Moreover, a systematic comparison is conducted across lattice-free and N-best-list-based methods. Experimental results on Librispeech show that using the word-level LM in training outperforms the phoneme-level LM. Besides, we find that the context size of the LM used for probability computation has a limited effect on performance. Moreover, our results reveal the pivotal importance of the hypothesis space quality in sequence discriminative training.
We investigate a novel modeling approach for end-to-end neural network training using hidden Markov models (HMM) where the transition probabilities between hidden states are modeled and learned explicitly. Most contem...
We investigate a novel modeling approach for end-to-end neural network training using hidden Markov models (HMM) where the transition probabilities between hidden states are modeled and learned explicitly. Most contemporary sequence-to-sequence models allow for from-scratch training by summing over all possible label segmentations in a given topology. In our approach there are explicit, learnable probabilities for transitions between segments as opposed to a blank label that implicitly encodes duration *** implement a GPU-based forward-backward algorithm that enables the simultaneous training of label and transition *** investigate recognition results and additionally Viterbi alignments of our models. We find that while the transition model training does not improve recognition performance, it has a positive impact on the alignment quality. The generated alignments are shown to be viable targets in state-of-the-art Viterbi trainings.
暂无评论