咨询与建议

限定检索结果

文献类型

  • 17 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 24 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 14 篇 理学
    • 7 篇 数学
    • 4 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 3 篇 化学
    • 3 篇 生物学
    • 2 篇 系统科学
    • 1 篇 天文学
  • 14 篇 工学
    • 8 篇 计算机科学与技术...
    • 7 篇 软件工程
    • 3 篇 控制科学与工程
    • 3 篇 化学工程与技术
    • 3 篇 生物工程
    • 2 篇 材料科学与工程(可...
    • 1 篇 仪器科学与技术
    • 1 篇 信息与通信工程
    • 1 篇 安全科学与工程
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 2 篇 embeddings
  • 2 篇 convex optimizat...
  • 1 篇 chemical activat...
  • 1 篇 sustainable deve...
  • 1 篇 deep learning
  • 1 篇 bibliometrics
  • 1 篇 digital arithmet...
  • 1 篇 three-dimensiona...
  • 1 篇 percolation
  • 1 篇 transformers
  • 1 篇 electric field e...
  • 1 篇 education
  • 1 篇 iterative method...
  • 1 篇 polymer conforma...
  • 1 篇 prediction
  • 1 篇 capacitance
  • 1 篇 singular value d...
  • 1 篇 educational tech...
  • 1 篇 zebrafish cardio...
  • 1 篇 spatio-temporal ...

机构

  • 5 篇 machine learning...
  • 4 篇 machine learning...
  • 3 篇 school of comput...
  • 3 篇 school of inform...
  • 3 篇 key laboratory o...
  • 3 篇 key laboratory o...
  • 2 篇 cispa helmholtz ...
  • 2 篇 jiangsu province...
  • 1 篇 beijing national...
  • 1 篇 college of compu...
  • 1 篇 data analytics &...
  • 1 篇 department of ph...
  • 1 篇 yale university ...
  • 1 篇 laboratory of ma...
  • 1 篇 max planck insti...
  • 1 篇 institute of phy...
  • 1 篇 menten ai inc. p...
  • 1 篇 institute for th...
  • 1 篇 benin
  • 1 篇 icfo - institut ...

作者

  • 6 篇 jaggi martin
  • 5 篇 martin jaggi
  • 3 篇 sebastian u. sti...
  • 2 篇 nikita doikov
  • 2 篇 hossmann andreaa
  • 2 篇 bennani-smires k...
  • 2 篇 musat claudiu
  • 2 篇 baeriswyl michae...
  • 2 篇 li junke
  • 2 篇 liu kai
  • 1 篇 okula robert
  • 1 篇 brokowski trevor
  • 1 篇 lewenstein macie...
  • 1 篇 jun meng
  • 1 篇 raj anant
  • 1 篇 wang lei
  • 1 篇 stich sebastian ...
  • 1 篇 koch rouven
  • 1 篇 jan overbeck
  • 1 篇 carleo giuseppe

语言

  • 23 篇 英文
  • 1 篇 中文
检索条件"机构=Machine Learning and Optimization Laboratory"
24 条 记 录,以下是1-10 订阅
排序:
Simple unsupervised keyphrase extraction using sentence embeddings  22
Simple unsupervised keyphrase extraction using sentence embe...
收藏 引用
22nd Conference on Computational Natural Language learning, CoNLL 2018
作者: Bennani-Smires, Kamil Musat, Claudiu Hossmann, Andreaa Baeriswyl, Michael Jaggi, Martin Data Analytics and AI Swisscom AG Switzerland Machine Learning and Optimization Laboratory EPFL Switzerland
Keyphrase extraction is the task of automatically selecting a small set of phrases that best describe a given free text document. Supervised keyphrase extraction requires large amounts of labeled training data and gen... 详细信息
来源: 评论
Lung Ultrasound for the Detection of Pulmonary Tuberculosis Using Expert- and AI-Guided Interpretation: A Prospective Cohort Study
SSRN
收藏 引用
SSRN 2025年
作者: Suttels, Véronique Brokowski, Trevor Wachinou, Ablo Prudence Wolleb, Julia Hada, Aboudou Rasisou Du Toit, Jacques Daniel Fiogbé, Arnauld Attannon Guendehou, Brice Alovokpinhou, Frederic Sefou, Fadyl Makpemikpa, Ginette Bessat, Cécile Roux, Alexia Garcia, Elena Brahier, Thomas Opota, Onya Doenz, Jonathan Vignoud, Julien Agodokpessi, Gildas Affolabi, Dissou Hartley, Mary-Anne Boillat-Blanco, Noémie Department of Medicine Infectious Diseases Lausanne University Hospital University of Lausanne Lausanne Switzerland Yale School of Medicine Department of Biomedical Informatics & Data Science New HavenCT06510 United States Cotonou Benin Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa Emergency Department Lausanne University Hospital University of Lausanne Lausanne1011 Switzerland Institute of Microbiology University of Lausanne University Hospital Centre Lausanne Switzerland Lausanne1015 Switzerland National Reference Laboratory for Mycobacteriology Cotonou Benin Yale University United States Faculty of Health Sciences Benin Intelligent Global Health Machine Learning and Optimization Laboratory
Background: Point-of-care lung ultrasound (LUS) is a promising tool for portable sputum-free tuberculosis (TB) triage. We investigate the diagnostic performance of LUS to detect TB using expert and artificial intellig... 详细信息
来源: 评论
Beyond spectral gap: the role of the topology in decentralized learning
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2023年 第1期24卷 17074-17104页
作者: Thijs Vogels Hadrien Hendrikx Martin Jaggi Machine Learning and Optimization Laboratory EPFL Lausanne Switzerland
In data-parallel optimization of machine learning models, workers collaborate to improve their estimates of the model: more accurate gradients allow them to use larger learning rates and optimize faster. In the decent... 详细信息
来源: 评论
Expanded Gating Ranges Improve Activation Functions
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Allen Hao Machine Learning and Optimization Laboratory EPFL Switzerland
Activation functions are core components of all deep learning architectures. Currently, the most popular activation functions are smooth ReLU variants like GELU and SiLU. These are self-gated activation functions wher... 详细信息
来源: 评论
Second-Order optimization with Lazy Hessians
arXiv
收藏 引用
arXiv 2022年
作者: Doikov, Nikita Chayti, El Mahdi Jaggi, Martin Machine Learning and Optimization Laboratory EPFL Switzerland
We analyze Newton’s method with lazy Hessian updates for solving general possibly non-convex optimization problems. We propose to reuse a previously seen Hessian for several iterations while computing new gradients a... 详细信息
来源: 评论
Beyond spectral gap (extended): The role of the topology in decentralized learning
arXiv
收藏 引用
arXiv 2023年
作者: Vogels, Thijs Hendrikx, Hadrien Jaggi, Martin Machine Learning and Optimization Laboratory EPFL Lausanne Switzerland
In data-parallel optimization of machine learning models, workers collaborate to improve their estimates of the model: more accurate gradients allow them to use larger learning rates and optimize faster. In the decent... 详细信息
来源: 评论
Sparsified SGD with memory  18
Sparsified SGD with memory
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing Systems
作者: Sebastian U. Stich Jean-Baptiste Cordonnier Martin Jaggi Machine Learning and Optimization Laboratory (MLO) EPFL Switzerland
Huge scale machine learning problems are nowadays tackled by distributed optimization algorithms, i.e. algorithms that leverage the compute power of many devices for training. The communication overhead is a key bottl...
来源: 评论
Simple unsupervised keyphrase extraction using sentence embeddings
arXiv
收藏 引用
arXiv 2018年
作者: Bennani-Smires, Kamil Musat, Claudiu Hossmann, Andreaa Baeriswyl, Michael Jaggi, Martin Data Analytics & AI Swisscom AG Machine Learning and Optimization Laboratory EPFL
Keyphrase extraction is the task of automatically selecting a small set of phrases that best describe a given free text document. Supervised keyphrase extraction requires large amounts of labeled training data and gen... 详细信息
来源: 评论
Safe adaptive importance sampling
arXiv
收藏 引用
arXiv 2017年
作者: Stich, Sebastian U. Raj, Anant Jaggi, Martin EPFL Machine Learning and Optimization Laboratory Max Planck Institute for Intelligent Systems
Importance sampling has become an indispensable strategy to speed up optimization algorithms for large-scale applications. Improved adaptive variants-using importance values defined by the complete gradient informatio... 详细信息
来源: 评论
Gene locations may contribute to predicting gene regulatory relationships
收藏 引用
Journal of Zhejiang University-Science B(Biomedicine & Biotechnology) 2018年 第1期19卷 25-37页
作者: Jun MENG Wen-yuan XU Xiao CHEN Tao LIN Xiao-yu DENG Department of System Science and Engineering School of Electrical Engineering Zhejiang University Laboratory of Machine Learning and Optimization école Polytechnique Fédérale de Lausanne (EPFL)
We propose that locations of genes on chromosomes can contribute to the prediction of gene regulatory relationships. We constructed a time-based gene regulatory network of zebrafish cardiogenesis on the basis of a spa... 详细信息
来源: 评论