咨询与建议

限定检索结果

文献类型

  • 86 篇 会议
  • 62 篇 期刊文献

馆藏范围

  • 148 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 63 篇 计算机科学与技术...
    • 59 篇 软件工程
    • 47 篇 控制科学与工程
    • 15 篇 机械工程
    • 14 篇 仪器科学与技术
    • 11 篇 生物工程
    • 6 篇 信息与通信工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 力学(可授工学、理...
    • 3 篇 电气工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 农业工程
    • 2 篇 安全科学与工程
  • 46 篇 理学
    • 33 篇 数学
    • 13 篇 统计学(可授理学、...
    • 11 篇 生物学
    • 7 篇 系统科学
    • 6 篇 物理学
    • 3 篇 化学
  • 16 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 农学
    • 3 篇 作物学
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 15 篇 planning
  • 10 篇 robots
  • 10 篇 trajectory
  • 9 篇 reinforcement le...
  • 7 篇 robot sensing sy...
  • 6 篇 motion planning
  • 6 篇 optimization
  • 5 篇 navigation
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 5 篇 training
  • 4 篇 grasping
  • 4 篇 task analysis
  • 4 篇 three-dimensiona...
  • 4 篇 automation
  • 4 篇 adversarial mach...
  • 4 篇 computational mo...
  • 4 篇 kinematics
  • 3 篇 conferences

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 10 篇 learning and int...
  • 8 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 lamarr institute...
  • 3 篇 munich institute...
  • 3 篇 technische unive...
  • 3 篇 machine learning...
  • 3 篇 robotics institu...
  • 2 篇 technical univer...
  • 2 篇 barcelona instit...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...

作者

  • 45 篇 toussaint marc
  • 31 篇 marc toussaint
  • 12 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 schoellig angela...
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 hartmann valenti...
  • 4 篇 orthey andreas
  • 4 篇 zhou siqi
  • 4 篇 ozgur s. oguz
  • 4 篇 pan sicong
  • 4 篇 angela p. schoel...
  • 4 篇 oh yoojin
  • 4 篇 dawood murad
  • 4 篇 englert peter

语言

  • 143 篇 英文
  • 5 篇 其他
检索条件"机构=Machine Learning and Robotics Lab University of Stuttgart"
148 条 记 录,以下是21-30 订阅
排序:
Kinematic morphing networks for manipulation skill transfer
arXiv
收藏 引用
arXiv 2018年
作者: Englert, Peter Toussaint, Marc Machine Learning & Robotics Lab University of Stuttgart Germany
The transfer of a robot skill between different geometric environments is non-trivial since a wide variety of environments exists, sensor observations as well as robot motions are high-dimensional, and the environment... 详细信息
来源: 评论
Prediction of Human Full-Body Movements with Motion Optimization and Recurrent Neural Networks
Prediction of Human Full-Body Movements with Motion Optimiza...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Philipp Kratzer Marc Toussaint Jim Mainprice Machine Learning and Robotics Lab University of Stuttgart Germany
Human movement prediction is difficult as humans naturally exhibit complex behaviors that can change drastically from one environment to the next. In order to alleviate this issue, we propose a prediction framework th... 详细信息
来源: 评论
Touch based POMDP manipulation via sequential submodular optimization
Touch based POMDP manipulation via sequential submodular opt...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Ngo Anh Vien Marc Toussaint Machine Learning & Robotics Lab University of Stuttgart Germany
Exploiting the submodularity of entropy-related objectives has recently led to a series of successes in machine learning and sequential decision making. Its generalized framework, adaptive submodularity, has later bee... 详细信息
来源: 评论
Relational Activity Processes for Modeling Concurrent Cooperation
Relational Activity Processes for Modeling Concurrent Cooper...
收藏 引用
IEEE International Conference on robotics and Automation
作者: Marc Toussaint Thibaut Munzer Yoan Mollard Li Yang Wu Ngo Anh Vien Manuel Lopes Machine Learning and Robotics Lab University of Stuttgart Germany
In human-robot collaboration, multi-agent domains, or single-robot manipulation with multiple end-effectors, the activities of the involved parties are naturally concurrent. Such domains are also naturally relational ... 详细信息
来源: 评论
Identification of unmodeled objects from symbolic descriptions
arXiv
收藏 引用
arXiv 2017年
作者: Baisero, Andrea Otte, Stefan Englert, Peter Toussaint, Marc Machine Learning and Robotics Lab University of Stuttgart Germany
Successful human-robot cooperation hinges on each agent's ability to process and exchange information about the shared environment and the task at hand. Human communication is primarily based on symbolic abstracti... 详细信息
来源: 评论
Int-HRL: towards intention-based hierarchical reinforcement learning
收藏 引用
Neural Computing and Applications 2024年 1-12页
作者: Penzkofer, Anna Schaefer, Simon Strohm, Florian Bâce, Mihai Leutenegger, Stefan Bulling, Andreas Institute for Visualisation and Interactive Systems University of Stuttgart Pfaffenwaldring 5A Stuttgart70569 Germany Machine Learning for Robotics Technical University of Munich Boltzmannstrasse 3 Munich85748 Germany Department of Computer Science KU Leuven box 2600 Andreas Vesaliusstraat 13 Leuven3000 Belgium
While deep reinforcement learning (RL) agents outperform humans on an increasing number of tasks, training them requires data equivalent to decades of human gameplay. Recent hierarchical RL methods have increased samp... 详细信息
来源: 评论
THE MULTIPLE VOICES OF MUSICAL EMOTIONS: SOURCE SEPARATION FOR IMPROVING MUSIC EMOTION RECOGNITION MODELS AND THEIR INTERPRETABILITY  21
THE MULTIPLE VOICES OF MUSICAL EMOTIONS: SOURCE SEPARATION F...
收藏 引用
21st International Society for Music Information Retrieval Conference, ISMIR 2020
作者: de Berardinis, Jacopo Cangelosi, Angelo Coutinho, Eduardo Machine Learning and Robotics Group University of Manchester United Kingdom Applied Music Research Lab University of Liverpool United Kingdom
Despite the manifold developments in music emotion recognition and related areas, estimating the emotional impact of music still poses many challenges. These are often associated to the complexity of the acoustic code... 详细信息
来源: 评论
Feature discovery for sequential prediction of monophonic music  18
Feature discovery for sequential prediction of monophonic mu...
收藏 引用
18th International Society for Music Information Retrieval Conference, ISMIR 2017
作者: Langhabel, Jonas Lieck, Robert Toussaint, Marc Rohrmeier, Martin Department of Computer Science TU Berlin Germany Machine Learning and Robotics Lab University of Stuttgart Germany Systematic Musicology and Music Cognition TU Dresden Germany Digital and Cognitive Musicology Lab EPFL Switzerland
learning a model for sequential prediction of symbolic music remains an open challenge. An important special case is the prediction of pitch sequences based on a corpus of monophonic music. We contribute to this line ... 详细信息
来源: 评论
Reactive phase and task space adaptation for robust motion execution
Reactive phase and task space adaptation for robust motion e...
收藏 引用
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Peter Englert Marc Toussaint Machine Learning and Robotics Lab Universität Stuttgart Germany
An essential aspect for making robots succeed in real-world environments is to give them the ability to robustly perform motions in continuously changing situations. Classical motion planning methods usually create pl... 详细信息
来源: 评论
Active Inverse Model learning with Error and Reachable Set Estimates
Active Inverse Model Learning with Error and Reachable Set E...
收藏 引用
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Danny Driess Syn Schmitt Marc Toussaint Machine Learning and Robotics Lab University of Stuttgart Germany Biomechanics and Biorobotics Group University of Stuttgart Germany
In this work, we propose a framework to learn an inverse model of redundant systems. We address three problems. By formalizing what it actually means to learn an inverse model, we derive a method where the inverse mod...
来源: 评论