咨询与建议

限定检索结果

文献类型

  • 86 篇 会议
  • 61 篇 期刊文献

馆藏范围

  • 147 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 89 篇 工学
    • 62 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 46 篇 控制科学与工程
    • 14 篇 机械工程
    • 14 篇 仪器科学与技术
    • 10 篇 生物工程
    • 6 篇 信息与通信工程
    • 5 篇 生物医学工程(可授...
    • 3 篇 力学(可授工学、理...
    • 3 篇 电气工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 农业工程
    • 2 篇 安全科学与工程
  • 46 篇 理学
    • 33 篇 数学
    • 13 篇 统计学(可授理学、...
    • 11 篇 生物学
    • 7 篇 系统科学
    • 6 篇 物理学
    • 3 篇 化学
  • 16 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 农学
    • 3 篇 作物学
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 15 篇 planning
  • 10 篇 robots
  • 10 篇 trajectory
  • 9 篇 reinforcement le...
  • 7 篇 robot sensing sy...
  • 6 篇 motion planning
  • 6 篇 optimization
  • 5 篇 navigation
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 5 篇 training
  • 4 篇 grasping
  • 4 篇 task analysis
  • 4 篇 three-dimensiona...
  • 4 篇 automation
  • 4 篇 adversarial mach...
  • 4 篇 computational mo...
  • 4 篇 kinematics
  • 3 篇 conferences

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 10 篇 learning and int...
  • 8 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 lamarr institute...
  • 3 篇 munich institute...
  • 3 篇 technische unive...
  • 3 篇 machine learning...
  • 3 篇 robotics institu...
  • 2 篇 technical univer...
  • 2 篇 barcelona instit...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...

作者

  • 45 篇 toussaint marc
  • 31 篇 marc toussaint
  • 12 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 schoellig angela...
  • 5 篇 hartmann valenti...
  • 4 篇 orthey andreas
  • 4 篇 zhou siqi
  • 4 篇 ozgur s. oguz
  • 4 篇 pan sicong
  • 4 篇 angela p. schoel...
  • 4 篇 oh yoojin
  • 4 篇 dawood murad
  • 4 篇 englert peter

语言

  • 142 篇 英文
  • 5 篇 其他
检索条件"机构=Machine Learning and Robotics Lab University of Stuttgart"
147 条 记 录,以下是21-30 订阅
排序:
Temperature-Aware Memory Mapping and Active Cooling of Neural Processing Units
Temperature-Aware Memory Mapping and Active Cooling of Neura...
收藏 引用
International Symposium on Low Power Electronics and Design (ISLPED)
作者: Vahidreza Moghaddas Hammam Kattan Tim Bücher Mikail Yayla Jian-Jia Chen Hussam Amrouch TU Dortmund University University of Stuttgart Lamarr Institute for Machine Learning and Artificial Intelligences AI Processor Design Technical University of Munich Munich Institute of Robotics and Machine Intelligence
Neural processing units (NPUs) have become indispensable for meeting the high computational demands of deep neural networks (DNNs). They provide a very efficient solution, thanks to having a huge MAC array that enable...
来源: 评论
Safe Multi-Agent Reinforcement learning for Behavior-Based Cooperative Navigation
arXiv
收藏 引用
arXiv 2023年
作者: Dawood, Murad Pan, Sicong Dengler, Nils Zhou, Siqi Schoellig, Angela P. Bennewitz, Maren The Humanoid Robots Lab University of Bonn Germany The Lamarr Institute for Machine Learning and Artificial Intelligence and the Center for Robotics Bonn Germany The Learning Systems and Robotics lab The Technical University of Munich Germany
In this paper, we address the problem of behavior-based cooperative navigation of mobile robots using safe multi-agent reinforcement learning (MARL). Our work is the first to focus on cooperative navigation without in... 详细信息
来源: 评论
Sustainable Grid through Distributed Data Centers Spinning AI Demand for Grid Stabilization and Optimization
arXiv
收藏 引用
arXiv 2025年
作者: Evans, Scott C. Dahlin, Nathan Ndiaye, Ibrahima Ekanayake, Sachini Piyoni Duncan, Alexander Rose, Blake Huang, Hao AI-Machine Learning Robotics Lab United States Electrification Mission United States ECE Department University at Albany SUNY United States
We propose a disruptive paradigm to actively place and schedule TWhrs of parallel AI jobs strategically on the grid, at distributed, grid-aware high performance compute data centers (HPC) capable of using their massiv... 详细信息
来源: 评论
SimpleMapping: Real-Time Visual-Inertial Dense Mapping with Deep Multi-View Stereo
SimpleMapping: Real-Time Visual-Inertial Dense Mapping with ...
收藏 引用
International Symposium on Mixed and Augmented Reality (ISMAR)
作者: Yingye Xin Xingxing Zuo Dongyue Lu Stefan Leutenegger Smart Robotics Lab Technical University of Munich Germany Munich Center for Machine Learning (MCML) Germany
We present a real-time visual-inertial dense mapping method capable of performing incremental 3D mesh reconstruction with high quality using only sequential monocular images and inertial measurement unit (IMU) reading...
来源: 评论
Control-Barrier-Aided Teleoperation with Visual-Inertial SLAM for Safe MAV Navigation in Complex Environments
Control-Barrier-Aided Teleoperation with Visual-Inertial SLA...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Siqi Zhou Sotiris Papatheodorou Stefan Leutenegger Angela P. Schoellig Learning Systems and Robotics Lab School of Computation Information and Technology Technical University of Munich Munich Institute of Robotics and Machine Intelligence (MIRMI) Smart Robotics Lab School of Computation Information and Technology Technical University of Munich Department of Computing Smart Robotics Lab Imperial College London
In this paper, we consider a Micro Aerial Vehicle (MAV) system teleoperated by a non-expert and introduce a perceptive safety filter that leverages Control Barrier Functions (CBFs) in conjunction with Visual-Inertial ... 详细信息
来源: 评论
Latent Action Priors for Locomotion with Deep Reinforcement learning
arXiv
收藏 引用
arXiv 2024年
作者: Hausdörfer, Oliver von Rohr, Alexander Lefort, Éric Schoellig, Angela P. The Technical University of Munich Germany TUM School of Computation Information and Technology Department of Computer Engineering Learning Systems and Robotics Lab Germany Munich Institute of Robotics and Machine Intelligence Germany
Deep Reinforcement learning (DRL) enables robots to learn complex behaviors through interaction with the environment. However, due to the unrestricted nature of the learning algorithms, the resulting solutions are oft... 详细信息
来源: 评论
Relative Representations: Topological and Geometric Perspectives
arXiv
收藏 引用
arXiv 2024年
作者: García-Castellanos, Alejandro Marchetti, Giovanni Luca Kragic, Danica Scolamiero, Martina Amsterdam Machine Learning Lab University of Amsterdam Netherlands Department of Mathematics KTH Royal Institute of Technology Sweden Division of Robotics Perception and Learning KTH Royal Institute of Technology Sweden
Relative representations are an established approach to zero-shot model stitching, consisting of a non-trainable transformation of the latent space of a deep neural network. Based on insights of topological and geomet... 详细信息
来源: 评论
Multi-Step Model Predictive Safety Filters: Reducing Chattering by Increasing the Prediction Horizon
Multi-Step Model Predictive Safety Filters: Reducing Chatter...
收藏 引用
IEEE Conference on Decision and Control
作者: Federico Pizarro Bejarano Lukas Brunke Angela P. Schoellig the Learning Systems and Robotics Lab University of Toronto Robotics Institute and the Vector Institute for Artificial Intelligence Toronto Canada Technical University of Munich and the Munich Institute for Robotics and Machine Intelligence (MIRMI) Germany
learning-based controllers have demonstrated su-perior performance compared to classical controllers in various tasks. However, providing safety guarantees is not trivial. Safety, the satisfaction of state and input c...
来源: 评论
Radar-Only Odometry and Mapping for Autonomous Vehicles
Radar-Only Odometry and Mapping for Autonomous Vehicles
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Daniel Casado Herraez Matthias Zeller Le Chang Ignacio Vizzo Michael Heidingsfeld Cyrill Stachniss CARIAD SE and With the University of Bonn Germany CARIAD SE and With the University of Stuttgart Germany Dexory UK University of Bonn is With CARIAD SE Germany Center for Robotics University of Bonn and With the Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Odometry and mapping play a pivotal role in the navigation of autonomous vehicles. In this paper, we address the problem of pose estimation and map creation using only radar sensors. We focus on two odometry estimatio... 详细信息
来源: 评论
Balanced resonate-and-fire neurons  24
Balanced resonate-and-fire neurons
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Saya Higuchi Sebastian Kairat Sander M. Bohté Sebastian Otte Adaptive AI Lab Institute of Robotics and Cognitive Systems University of Lübeck Germany Machine Learning Group Centrum Wiskunde & Informatica (CWI) Amsterdam The Netherlands
The resonate-and-fire (RF) neuron, introduced over two decades ago, is a simple, efficient, yet biologically plausible spiking neuron model, which can extract frequency patterns within the time domain due to its reson...
来源: 评论