咨询与建议

限定检索结果

文献类型

  • 86 篇 会议
  • 62 篇 期刊文献

馆藏范围

  • 148 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 63 篇 计算机科学与技术...
    • 59 篇 软件工程
    • 47 篇 控制科学与工程
    • 15 篇 机械工程
    • 14 篇 仪器科学与技术
    • 11 篇 生物工程
    • 6 篇 信息与通信工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 力学(可授工学、理...
    • 3 篇 电气工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 农业工程
    • 2 篇 安全科学与工程
  • 46 篇 理学
    • 33 篇 数学
    • 13 篇 统计学(可授理学、...
    • 11 篇 生物学
    • 7 篇 系统科学
    • 6 篇 物理学
    • 3 篇 化学
  • 16 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 农学
    • 3 篇 作物学
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 15 篇 planning
  • 10 篇 robots
  • 10 篇 trajectory
  • 9 篇 reinforcement le...
  • 7 篇 robot sensing sy...
  • 6 篇 motion planning
  • 6 篇 optimization
  • 5 篇 navigation
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 5 篇 training
  • 4 篇 grasping
  • 4 篇 task analysis
  • 4 篇 three-dimensiona...
  • 4 篇 automation
  • 4 篇 adversarial mach...
  • 4 篇 computational mo...
  • 4 篇 kinematics
  • 3 篇 conferences

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 10 篇 learning and int...
  • 8 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 lamarr institute...
  • 3 篇 munich institute...
  • 3 篇 technische unive...
  • 3 篇 machine learning...
  • 3 篇 robotics institu...
  • 2 篇 technical univer...
  • 2 篇 barcelona instit...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...

作者

  • 45 篇 toussaint marc
  • 31 篇 marc toussaint
  • 12 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 schoellig angela...
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 hartmann valenti...
  • 4 篇 orthey andreas
  • 4 篇 zhou siqi
  • 4 篇 ozgur s. oguz
  • 4 篇 pan sicong
  • 4 篇 angela p. schoel...
  • 4 篇 oh yoojin
  • 4 篇 dawood murad
  • 4 篇 englert peter

语言

  • 143 篇 英文
  • 5 篇 其他
检索条件"机构=Machine Learning and Robotics Lab University of Stuttgart"
148 条 记 录,以下是51-60 订阅
排序:
Anticipating Human Intention for Full-Body Motion Prediction in Object Grasping and Placing Tasks
Anticipating Human Intention for Full-Body Motion Prediction...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Philipp Kratzer Niteesh Balachandra Midlagajni Marc Toussaint Jim Mainprice Machine Learning and Robotics Lab University of Stuttgart Germany Humans to Robots Motions Research Group HRM University of Stuttgart Germany Learning and Intelligent Systems Lab Technical University of Berlin Germany
Motion prediction in unstructured environments is a difficult problem and is essential for safe and efficient human-robot space sharing and collaboration. In this work, we focus on manipulation movements in environmen...
来源: 评论
Anticipating Human Intention for Full-Body Motion Prediction in Object Grasping and Placing Tasks
arXiv
收藏 引用
arXiv 2020年
作者: Kratzer, Philipp Midlagajni, Niteesh Balachandra Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Humans to Robots Motions Research Group HRM University of Stuttgart Germany Learning and Intelligent Systems Lab Technical University of Berlin Germany
Motion prediction in unstructured environments is a difficult problem and is essential for safe and efficient human-robot space sharing and collaboration. In this work, we focus on manipulation movements in environmen... 详细信息
来源: 评论
Regression with comparisons: escaping the curse of dimensionality with ordinal information
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2020年 第1期21卷 6480-6533页
作者: Yichong Xu Sivaraman Balakrishnan Aarti Singh Artur Dubrawski Machine Learning Department Department of Statistics and Data Science Machine Learning Department Auton Lab The Robotics Institute Carnegie Mellon University Pittsburgh PA
In supervised learning, we typically leverage a fully labeled dataset to design methods for function estimation or prediction. In many practical situations, we are able to obtain alternative feedback, possibly at a lo... 详细信息
来源: 评论
Deep visual reasoning: learning to predict action sequences for task and motion planning from an initial scene image
arXiv
收藏 引用
arXiv 2020年
作者: Driess, Danny Ha, Jung-Su Toussaint, Marc Machine Learning and Robotics Lab University of Stuttgart Germany Max-Planck Institute for Intelligent Systems Stuttgart Germany Learning and Intelligent Systems Group TU Berlin Germany
In this paper, we propose a deep convolutional recurrent neural network that predicts action sequences for task and motion planning (TAMP) from an initial scene image. Typical TAMP problems are formalized by combining... 详细信息
来源: 评论
Plan-based relaxed reward shaping for goal-directed tasks
arXiv
收藏 引用
arXiv 2021年
作者: Schubert, Ingmar Oguz, Ozgur S. Toussaint, Marc Learning and Intelligent Systems Group TU Berlin Germany Max Planck Institute for Intelligent Systems Stuttgart Germany Machine Learning and Robotics Lab University of Stuttgart Germany
In high-dimensional state spaces, the usefulness of Reinforcement learning (RL) is limited by the problem of exploration. This issue has been addressed using potential-based reward shaping (PB-RS) previously. In the p... 详细信息
来源: 评论
Asymptotically Optimal Belief Space Planning in Discrete Partially-Observable Domains
arXiv
收藏 引用
arXiv 2023年
作者: Freund, Janis Eric Phiquepal, Camille Orthey, Andreas Toussaint, Marc Technical University of Berlin Germany Realtime Robotics Inc. BostonMA United States Machine Learning & Robotics Lab University of Stuttgart Germany
Robots often have to operate in discrete partially observable worlds, where the states of world are only observable at runtime. To react to different world states, robots need contingencies. However, computing conting... 详细信息
来源: 评论
Entropy-based strategies for physical exploration of the environment's degrees of freedom
Entropy-based strategies for physical exploration of the env...
收藏 引用
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Stefan Otte Johannes Kulick Marc Toussaint Oliver Brock Machine Learning and Robotics Lab Universität Stuttgart Germany Robotics and Biology Laboratory Technische Universität Berlin Germany
Physical exploration refers to the challenge of autonomously discovering and learning how to manipulate the environment's degrees of freedom (DOF)-by identifying promising points of interaction and pushing or pull... 详细信息
来源: 评论
Opening a lockbox through physical exploration
Opening a lockbox through physical exploration
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Manuel Baum Matthew Bernstein Roberto Martin-Martin Sebastian Höfer Johannes Kulick Marc Toussaint Alex Kacelnik Oliver Brock Robotics and Biology Lab (RBO) Technische Universität Berlin Machine Learning and Robotics Lab (MLR) Universität Stuttgart Department of Zoology Oxford University
How can we close the gap between animals and robots when it comes to intelligently interacting with the environment? On our quest for answers, we have investigated the problem of physically exploring complex mechanica... 详细信息
来源: 评论
Sparse Gaussian process regression for compliant, real-time robot control
Sparse Gaussian process regression for compliant, real-time ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Jens Schreiter Peter Englert Duy Nguyen-Tuong Marc Toussaint Robert Bosch GmbH Department for Cognitive Systems Stuttgart Germany University of Stuttgart Machine Learning and Robotics Laboratory Stuttgart Germany
Sparse Gaussian process (GP) models provide an efficient way to perform regression on large data sets. The key idea is to select a representative subset of the available training data, which induces the sparse GP mode... 详细信息
来源: 评论
learning Efficient Constraint Graph Sampling for Robotic Sequential Manipulation
Learning Efficient Constraint Graph Sampling for Robotic Seq...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Joaquim Ortiz-Haro Valentin N. Hartmann Ozgur S. Oguz Marc Toussaint Machine Learning & Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Germany Max Planck Institute for Intelligent Systems Germany
Efficient sampling from constraint manifolds, and thereby generating a diverse set of solutions for feasibility problems, is a fundamental challenge. We consider the case where a problem is factored, that is, the unde... 详细信息
来源: 评论