咨询与建议

限定检索结果

文献类型

  • 86 篇 会议
  • 62 篇 期刊文献

馆藏范围

  • 148 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 63 篇 计算机科学与技术...
    • 59 篇 软件工程
    • 47 篇 控制科学与工程
    • 15 篇 机械工程
    • 14 篇 仪器科学与技术
    • 11 篇 生物工程
    • 6 篇 信息与通信工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 力学(可授工学、理...
    • 3 篇 电气工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 农业工程
    • 2 篇 安全科学与工程
  • 46 篇 理学
    • 33 篇 数学
    • 13 篇 统计学(可授理学、...
    • 11 篇 生物学
    • 7 篇 系统科学
    • 6 篇 物理学
    • 3 篇 化学
  • 16 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 农学
    • 3 篇 作物学
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 15 篇 planning
  • 10 篇 robots
  • 10 篇 trajectory
  • 9 篇 reinforcement le...
  • 7 篇 robot sensing sy...
  • 6 篇 motion planning
  • 6 篇 optimization
  • 5 篇 navigation
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 5 篇 training
  • 4 篇 grasping
  • 4 篇 task analysis
  • 4 篇 three-dimensiona...
  • 4 篇 automation
  • 4 篇 adversarial mach...
  • 4 篇 computational mo...
  • 4 篇 kinematics
  • 3 篇 conferences

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 10 篇 learning and int...
  • 8 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 lamarr institute...
  • 3 篇 munich institute...
  • 3 篇 technische unive...
  • 3 篇 machine learning...
  • 3 篇 robotics institu...
  • 2 篇 technical univer...
  • 2 篇 barcelona instit...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...

作者

  • 45 篇 toussaint marc
  • 31 篇 marc toussaint
  • 12 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 schoellig angela...
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 hartmann valenti...
  • 4 篇 orthey andreas
  • 4 篇 zhou siqi
  • 4 篇 ozgur s. oguz
  • 4 篇 pan sicong
  • 4 篇 angela p. schoel...
  • 4 篇 oh yoojin
  • 4 篇 dawood murad
  • 4 篇 englert peter

语言

  • 143 篇 英文
  • 5 篇 其他
检索条件"机构=Machine Learning and Robotics Lab University of Stuttgart"
148 条 记 录,以下是61-70 订阅
排序:
Co-Optimizing Robot, Environment, and Tool Design via Joint Manipulation Planning
Co-Optimizing Robot, Environment, and Tool Design via Joint ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Marc Toussaint Jung-Su Ha Ozgur S. Oguz Learning & Intelligent Systems Lab TU Berlin Germany Max Planck Institute for Intelligent Systems Germany Machine Learning & Robotics Lab University of Stuttgart Germany
Existing work on sequential manipulation planning and trajectory optimization typically assumes the robot, environment and tools to be given. However, in particular in industrial applications, it is highly interesting... 详细信息
来源: 评论
learning to Control Redundant Musculoskeletal Systems with Neural Networks and SQP: Exploiting Muscle Properties
Learning to Control Redundant Musculoskeletal Systems with N...
收藏 引用
IEEE International Conference on robotics and Automation
作者: Danny Driess Heiko Zimmermann Simon Wolfen Dan Suissa Daniel Haeufle Daniel Hennes Marc Toussaint Syn Schmitt Machine Learning and Robotics Lab University of Stuttgart Germany Biomechanics and Biorobotics Group University of Stuttgart Germany Multi-Level Modeling in Motor Control and Rehabilitation Robotics University of Tübingen Germany
Modeling biomechanical musculoskeletal systems reveals that the mapping from muscle stimulations to movement dynamics is highly nonlinear and complex, which makes it difficult to control those systems with classical t... 详细信息
来源: 评论
MoGaze: A dataset of full-body motions that includes workspace geometry and eye-gaze
arXiv
收藏 引用
arXiv 2020年
作者: Kratzer, Philipp Bihlmaier, Simon Midlagajni, Niteesh Balachandra Prakash, Rohit Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Humans to Robots Motions Research Group University of Stuttgart Germany Humans to Robots Motions Research Group University of Stuttgart Germany Learning and Intelligent Systems lab TU Berlin Germany
As robots become more present in open human environments, it will become crucial for robotic systems to understand and predict human motion. Such capabilities depend heavily on the quality and availability of motion c... 详细信息
来源: 评论
Deep 6-DoF tracking of unknown objects for reactive grasping
arXiv
收藏 引用
arXiv 2021年
作者: Tuscher, Marc Hörz, Julian Driess, Danny Toussaint, Marc Sereact Germany Machine Learning and Robotics Lab University of Stuttgart Germany Max-Planck Institute for Intelligent Systems Stuttgart Germany Learning and Intelligent Systems TU Berlin Germany
Robotic manipulation of unknown objects is an important field of research. Practical applications occur in many real-world settings where robots need to interact with an unknown environment. We tackle the problem of r... 详细信息
来源: 评论
Effect of prehistory on the ambiguous stimuli processing in the human brain  5
Effect of prehistory on the ambiguous stimuli processing in ...
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Kuc, Alexander Neuroscience and Cognitive Technology Lab Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
To model the picture of the external environment, the brain uses data coming from the sensory system. However, it is believed that the brain’s representation of the external environment is formed not only by sensory ... 详细信息
来源: 评论
Long-Horizon Multi-Robot Rearrangement Planning for Construction Assembly
arXiv
收藏 引用
arXiv 2021年
作者: Hartmann, Valentin N. Orthey, Andreas Driess, Danny Oguz, Ozgur S. Toussaint, Marc Machine Learning & Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Group TU Berlin Germany Department of Computer Engineering Bilkent University Turkey
Robotic assembly planning enables architects to explicitly account for the assembly process during the design phase, and enables efficient building methods that profit from the robots' different capabilities. Prev... 详细信息
来源: 评论
An Interior Point Method Solving Motion Planning Problems with Narrow Passages
arXiv
收藏 引用
arXiv 2020年
作者: Mainprice, Jim Ratliff, Nathan Toussaint, Marc Schaal, Stefan Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems IS-MPITübingen & Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany
Algorithmic solutions for the motion planning problem have been investigated for five decades. Since the development of A* in 1969 many approaches have been investigated, traditionally classified as either grid decomp... 详细信息
来源: 评论
Robust Task and Motion Planning for Long-Horizon Architectural Construction Planning
Robust Task and Motion Planning for Long-Horizon Architectur...
收藏 引用
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Valentin N. Hartmann Ozgur S. Oguz Danny Driess Marc Toussaint Achim Menges Machine Learning & Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems Germany Institute for Computational Design and Construction University of Stuttgart Germany
Integrating robotic systems in architectural and construction processes is of core interest to increase the efficiency of the building industry. Automated planning for such systems enables design analysis tools and fa... 详细信息
来源: 评论
Motion prediction with recurrent neural network dynamical models and trajectory optimization
arXiv
收藏 引用
arXiv 2019年
作者: Kratzer, Philipp Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen Germany
Predicting human motion in unstructured and dynamic environments is difficult as humans naturally exhibit complex behaviors that can change drastically from one environment to the next. In order to alleviate this issu... 详细信息
来源: 评论
learning arbitration for shared autonomy by hindsight data aggregation
arXiv
收藏 引用
arXiv 2019年
作者: Oh, Yoojin Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems MPI-IS Tübingen Germany
In this paper we present a framework for the teleoperation of pick-and-place tasks. We define a shared control policy that allows to blend between direct user control and autonomous control based on user intent infere... 详细信息
来源: 评论