咨询与建议

限定检索结果

文献类型

  • 86 篇 会议
  • 62 篇 期刊文献

馆藏范围

  • 148 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 63 篇 计算机科学与技术...
    • 59 篇 软件工程
    • 47 篇 控制科学与工程
    • 15 篇 机械工程
    • 14 篇 仪器科学与技术
    • 11 篇 生物工程
    • 6 篇 信息与通信工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 力学(可授工学、理...
    • 3 篇 电气工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 农业工程
    • 2 篇 安全科学与工程
  • 46 篇 理学
    • 33 篇 数学
    • 13 篇 统计学(可授理学、...
    • 11 篇 生物学
    • 7 篇 系统科学
    • 6 篇 物理学
    • 3 篇 化学
  • 16 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 农学
    • 3 篇 作物学
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 15 篇 planning
  • 10 篇 robots
  • 10 篇 trajectory
  • 9 篇 reinforcement le...
  • 7 篇 robot sensing sy...
  • 6 篇 motion planning
  • 6 篇 optimization
  • 5 篇 navigation
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 5 篇 training
  • 4 篇 grasping
  • 4 篇 task analysis
  • 4 篇 three-dimensiona...
  • 4 篇 automation
  • 4 篇 adversarial mach...
  • 4 篇 computational mo...
  • 4 篇 kinematics
  • 3 篇 conferences

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 10 篇 learning and int...
  • 8 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 lamarr institute...
  • 3 篇 munich institute...
  • 3 篇 technische unive...
  • 3 篇 machine learning...
  • 3 篇 robotics institu...
  • 2 篇 technical univer...
  • 2 篇 barcelona instit...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...

作者

  • 45 篇 toussaint marc
  • 31 篇 marc toussaint
  • 12 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 schoellig angela...
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 hartmann valenti...
  • 4 篇 orthey andreas
  • 4 篇 zhou siqi
  • 4 篇 ozgur s. oguz
  • 4 篇 pan sicong
  • 4 篇 angela p. schoel...
  • 4 篇 oh yoojin
  • 4 篇 dawood murad
  • 4 篇 englert peter

语言

  • 143 篇 英文
  • 5 篇 其他
检索条件"机构=Machine Learning and Robotics Lab University of Stuttgart"
148 条 记 录,以下是71-80 订阅
排序:
An Interior Point Method Solving Motion Planning Problems with Narrow Passages
An Interior Point Method Solving Motion Planning Problems wi...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Jim Mainprice Nathan Ratliff Marc Toussaint Stefan Schaal Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen & Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany
Algorithmic solutions for the motion planning problem have been investigated for five decades. Since the development of A* in 1969 many approaches have been investigated, traditionally classified as either grid decomp...
来源: 评论
learning to arbitrate human and robot control using disagreement between sub-policies
arXiv
收藏 引用
arXiv 2021年
作者: Oh, Yoojin Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany Max Planck Institute for Intelligent Systems MPI-IS Tübingen/Stuttgart Germany
In the context of teleoperation, arbitration refers to deciding how to blend between human and autonomous robot commands. We present a reinforcement learning solution that learns an optimal arbitration strategy that a... 详细信息
来源: 评论
Prediction of human full-body movements with motion optimization and recurrent neural networks
arXiv
收藏 引用
arXiv 2019年
作者: Kratzer, Philipp Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen Germany
Human movement prediction is difficult as humans naturally exhibit complex behaviors that can change drastically from one environment to the next. In order to alleviate this issue, we propose a prediction framework th... 详细信息
来源: 评论
Robust task and motion planning for long-horizon architectural construction planning
arXiv
收藏 引用
arXiv 2020年
作者: Hartmann, Valentin N. Oguz, Ozgur S. Driess, Danny Toussaint, Marc Menges, Achim Machine Learning & Robotics Lab. University of Stuttgart Germany Max Planck Institute for Intelligent Systems Germany Institute for Computational Design and Construction University of Stuttgart Germany
Integrating robotic systems in architectural and construction processes is of core interest to increase the efficiency of the building industry. Automated planning for such systems enables design analysis tools and fa... 详细信息
来源: 评论
Deep workpiece region segmentation for bin picking
arXiv
收藏 引用
arXiv 2019年
作者: Khalid, Muhammad Usman Hager, Janik M. Kraus, Werner Huber, Marco F. Toussaint, Marc Robot and Assistive Systems Fraunhofer IPA Stuttgart Germany Machine Learning & Robotics Lab University of Stuttgart Germany Fraunhofer IPA Stuttgart and Institute of Industrial Manufacturing and Management IFF University of Stuttgart Germany
For most industrial bin picking solutions, the pose of a workpiece is localized by matching a CAD model to point cloud obtained from 3D sensor. Distinguishing flat workpieces from bottom of the bin in point cloud impo... 详细信息
来源: 评论
learning efficient constraint graph sampling for robotic sequential manipulation
arXiv
收藏 引用
arXiv 2020年
作者: Ortiz-Haro, Joaquim Hartmann, Valentin N. Oguz, Ozgur S. Toussaint, Marc Machine Learning & Robotics Lab. University of Stuttgart Germany Max Planck Institute for Intelligent Systems Germany Learning and Intelligent Systems Lab. TU Berlin Germany
Efficient sampling from constraint manifolds, and thereby generating a diverse set of solutions for feasibility problems, is a fundamental challenge. We consider the case where a problem is factored, that is, the unde... 详细信息
来源: 评论
Physical problem solving: Joint planning with symbolic, geometric, and dynamic constraints
arXiv
收藏 引用
arXiv 2017年
作者: Yildirim, Ilker Gerstenberg, Tobias Saeed, Basil Toussaint, Marc Tenenbaum, Joshua B. Brain and Cognitive Sciences Massachusetts Institute of Technology CambridgeMA United States Machine Learning and Robotics Lab University of Stuttgart Germany
In this paper, we present a new task that investigates how people interact with and make judgments about towers of blocks. In Experiment 1, participants in the lab solved a series of problems in which they had to re-c... 详细信息
来源: 评论
Temporal segmentation of pair-wise interaction phases in sequential manipulation demonstrations
Temporal segmentation of pair-wise interaction phases in seq...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: A. Baisero Y. Mollard M. Lopes M. Toussaint I. Lutkebohle Machine Learning and Robotics Lab University of Stuttgart Germany Flowers Team French Institute for Research in Computer Science and Automation (Inria) France
We consider the problem of learning from complex sequential demonstrations. We propose to analyze demonstrations in terms of the concurrent interaction phases which arise between pairs of involved bodies (hand-object ... 详细信息
来源: 评论
Multi-bound tree search for logic-geometric programming in cooperative manipulation domains
Multi-bound tree search for logic-geometric programming in c...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Marc Toussaint Manuel Lopes Machine Learning and Robotics Lab University of Stuttgart Germany INESC-ID Instituto Superior Técnico Universide de Lisboa Portugal
Joint symbolic and geometric planning is one of the core challenges in robotics. We address the problem of multi-agent cooperative manipulation, where we aim for jointly optimal paths for all agents and over the full ... 详细信息
来源: 评论
Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric Partial Differential Equations
arXiv
收藏 引用
arXiv 2024年
作者: Hagnberger, Jan Kalimuthu, Marimuthu Musekamp, Daniel Niepert, Mathias Machine Learning and Simulation Lab Institute for Artificial Intelligence University of Stuttgart Stuttgart Germany Germany
Transformer models are increasingly used for solving Partial Differential Equations (PDEs). Several adaptations have been proposed, all of which suffer from the typical problems of Transformers, such as quadratic memo... 详细信息
来源: 评论