咨询与建议

限定检索结果

文献类型

  • 86 篇 会议
  • 62 篇 期刊文献

馆藏范围

  • 148 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 63 篇 计算机科学与技术...
    • 59 篇 软件工程
    • 47 篇 控制科学与工程
    • 15 篇 机械工程
    • 14 篇 仪器科学与技术
    • 11 篇 生物工程
    • 6 篇 信息与通信工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 力学(可授工学、理...
    • 3 篇 电气工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 农业工程
    • 2 篇 安全科学与工程
  • 46 篇 理学
    • 33 篇 数学
    • 13 篇 统计学(可授理学、...
    • 11 篇 生物学
    • 7 篇 系统科学
    • 6 篇 物理学
    • 3 篇 化学
  • 16 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 农学
    • 3 篇 作物学
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 15 篇 planning
  • 10 篇 robots
  • 10 篇 trajectory
  • 9 篇 reinforcement le...
  • 7 篇 robot sensing sy...
  • 6 篇 motion planning
  • 6 篇 optimization
  • 5 篇 navigation
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 5 篇 training
  • 4 篇 grasping
  • 4 篇 task analysis
  • 4 篇 three-dimensiona...
  • 4 篇 automation
  • 4 篇 adversarial mach...
  • 4 篇 computational mo...
  • 4 篇 kinematics
  • 3 篇 conferences

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 10 篇 learning and int...
  • 8 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 lamarr institute...
  • 3 篇 munich institute...
  • 3 篇 technische unive...
  • 3 篇 machine learning...
  • 3 篇 robotics institu...
  • 2 篇 technical univer...
  • 2 篇 barcelona instit...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...

作者

  • 45 篇 toussaint marc
  • 31 篇 marc toussaint
  • 12 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 schoellig angela...
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 hartmann valenti...
  • 4 篇 orthey andreas
  • 4 篇 zhou siqi
  • 4 篇 ozgur s. oguz
  • 4 篇 pan sicong
  • 4 篇 angela p. schoel...
  • 4 篇 oh yoojin
  • 4 篇 dawood murad
  • 4 篇 englert peter

语言

  • 143 篇 英文
  • 5 篇 其他
检索条件"机构=Machine Learning and Robotics Lab University of Stuttgart"
148 条 记 录,以下是81-90 订阅
排序:
Trajectory-based off-policy deep reinforcement learning
arXiv
收藏 引用
arXiv 2019年
作者: Doerr, Andreas Volpp, Michael Toussaint, Marc Trimpe, Sebastian Daniel, Christian Bosch Center for Artificial Intelligence Renningen Germany Max Planck Institute for Intelligent Systems Stuttgart/Tubingen Germany Machine Learning and Robotics Lab University of Stuttgart Germany
Policy gradient methods are powerful reinforcement learning algorithms and have been demonstrated to solve many complex tasks. However, these methods are also data-inefficient, afflicted with high variance gradient es... 详细信息
来源: 评论
Control-Tree Optimization: an approach to MPC under discrete Partial Observability
arXiv
收藏 引用
arXiv 2023年
作者: Phiquepal, Camille Toussaint, Marc Machine Learning & Robotic Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Germany
This paper presents a new approach to Model Predictive Control for environments where essential, discrete variables are partially observed. Under this assumption, the belief state is a probability distribution over a ... 详细信息
来源: 评论
Path-Tree Optimization in Discrete Partially Observable Environments using Rapidly-Exploring Belief-Space Graphs
arXiv
收藏 引用
arXiv 2022年
作者: Phiquepal, Camille Orthey, Andreas Viennot, Nicolas Toussaint, Marc Machine Learning & Robotic Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Germany
Robots often need to solve path planning problems where essential and discrete aspects of the environment are partially observable. This introduces a multi-modality, where the robot must be able to observe and infer t... 详细信息
来源: 评论
Control-Tree Optimization: an approach to MPC under discrete Partial Observability
Control-Tree Optimization: an approach to MPC under discrete...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Camille Phiquepal Marc Toussaint Machine Learning & Robotic Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Germany
This paper presents a new approach to Model Predictive Control for environments where essential, discrete variables are partially observed. Under this assumption, the belief state is a probability distribution over a ... 详细信息
来源: 评论
Understanding the geometry of workspace obstacles in Motion Optimization
Understanding the geometry of workspace obstacles in Motion ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Nathan Ratliff Marc Toussaint Stefan Schaal Autonomous Motion Department Max Planck Institute for Intelligent Systems Tübingen Germany Machine Learning and Robotics Lab University of Stuttgart Germany
What is it that makes movement around obstacles hard? The answer seems clear: obstacles contort the geometry of the workspace and make it difficult to leverage what we consider easy and intuitive straight-line Cartesi... 详细信息
来源: 评论
Optimizing motion primitives to make symbolic models more predictive
Optimizing motion primitives to make symbolic models more pr...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Andreas Orthey Marc Toussaint Nikolay Jetchev LAAS Université de Toulouse UPS INSA INP ISAE Centre National de la Recherche Scientifique Toulouse France Machine Learning and Robotics Laboratory University of Stuttgart Stuttgart Germany Machine Learning and Robotics Laboratory FU Berlin Berlin Germany
Solving complex robot manipulation tasks requires to combine motion generation on the geometric level with planning on a symbolic level. On both levels robotics research has developed a variety of mature methodologies... 详细信息
来源: 评论
Natural Gradient Shared Control
Natural Gradient Shared Control
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Yoojin Oh Shao-Wen Wu Marc Toussaint Jim Mainprice Machine Learning and Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen Germany
We propose a formalism for shared control, which is the problem of defining a policy that blends user control and autonomous control. The challenge posed by the shared autonomy system is to maintain user control autho...
来源: 评论
Augmenting Human Policies using Riemannian Metrics for Human-Robot Shared Control
Augmenting Human Policies using Riemannian Metrics for Human...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Yoojin Oh Jean-Claude Passy Jim Mainprice Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems Stuttgart Germany Max Planck Institute for Intelligent Systems Tübingen Germany
We present a shared control framework for teleoperation that combines the human and autonomous robot agents operating in different dimension spaces. The shared control problem is an optimization problem to maximize th...
来源: 评论
Escaping local optima in POMDP planning as inference  11
Escaping local optima in POMDP planning as inference
收藏 引用
The 10th International Conference on Autonomous Agents and Multiagent Systems - Volume 3
作者: Pascal Poupart Tobias Lang Marc Toussaint University of Waterloo Ontario Canada Machine Learning and Robotics Lab FU Berlin Germany
Planning as inference recently emerged as a versatile approach to decision-theoretic planning and reinforcement learning for single and multi-agent systems in fully and partially observable domains with discrete and c... 详细信息
来源: 评论
Natural gradient shared control
arXiv
收藏 引用
arXiv 2020年
作者: Oh, Yoojin Wu, Shao-Wen Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen Germany
We propose a formalism for shared control, which is the problem of defining a policy that blends user control and autonomous control. The challenge posed by the shared autonomy system is to maintain user control autho... 详细信息
来源: 评论