咨询与建议

限定检索结果

文献类型

  • 33 篇 会议
  • 24 篇 期刊文献

馆藏范围

  • 57 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 40 篇 工学
    • 16 篇 计算机科学与技术...
    • 11 篇 生物医学工程(可授...
    • 11 篇 软件工程
    • 10 篇 控制科学与工程
    • 10 篇 生物工程
    • 7 篇 机械工程
    • 6 篇 信息与通信工程
    • 4 篇 光学工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 电气工程
    • 2 篇 化学工程与技术
    • 2 篇 石油与天然气工程
    • 2 篇 网络空间安全
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 核科学与技术
  • 27 篇 理学
    • 19 篇 生物学
    • 10 篇 数学
    • 5 篇 物理学
    • 4 篇 系统科学
    • 2 篇 化学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地球物理学
  • 5 篇 医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 5 篇 药学(可授医学、理...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 农学

主题

  • 3 篇 brain
  • 3 篇 robots
  • 2 篇 complex networks
  • 2 篇 object detection
  • 2 篇 reinforcement le...
  • 2 篇 dynamical system...
  • 2 篇 task analysis
  • 2 篇 image segmentati...
  • 2 篇 neural networks
  • 2 篇 trajectories
  • 2 篇 computational mo...
  • 2 篇 trajectory
  • 2 篇 feature extracti...
  • 2 篇 uncertainty
  • 2 篇 accuracy
  • 2 篇 data models
  • 2 篇 training
  • 2 篇 cost function
  • 1 篇 parallel process...
  • 1 篇 segmentation

机构

  • 11 篇 center for neuro...
  • 10 篇 neuroscience and...
  • 4 篇 machine learning...
  • 4 篇 state key labora...
  • 3 篇 tianjin key labo...
  • 3 篇 intelligent comp...
  • 3 篇 research laborat...
  • 3 篇 princeton plasma...
  • 3 篇 center for neuro...
  • 3 篇 cell technology ...
  • 3 篇 neuroscience and...
  • 3 篇 robotics institu...
  • 3 篇 neurotechnology ...
  • 2 篇 college of compu...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 laboratory of bi...
  • 2 篇 department of nu...
  • 2 篇 department of co...
  • 2 篇 robotics institu...

作者

  • 5 篇 han zhi
  • 4 篇 kurkin semen
  • 4 篇 marc toussaint
  • 3 篇 kazantsev victor...
  • 3 篇 wan dai
  • 3 篇 char ian
  • 3 篇 yunwei xin
  • 3 篇 schneider jeff
  • 3 篇 wang yao
  • 3 篇 hongpeng wang
  • 3 篇 kazantsev victor
  • 3 篇 tang yandong
  • 3 篇 zengchang qin
  • 2 篇 neiswanger willi...
  • 2 篇 abbate joseph
  • 2 篇 lin shao-bo
  • 2 篇 badarin a.a.
  • 2 篇 sami haddadin
  • 2 篇 chung youngseog
  • 2 篇 smirnov nikita

语言

  • 56 篇 英文
  • 1 篇 其他
检索条件"机构=Machine Learning and Robotics Laboratory"
57 条 记 录,以下是1-10 订阅
排序:
Wildlife Small Object Detection based on Enhanced Network in Ecological Surveillance  33
Wildlife Small Object Detection based on Enhanced Network in...
收藏 引用
第33届中国控制与决策会议
作者: Wan Dai Hongpeng Wang Yulin Song Yunwei Xin College of Computer Science Nankai University Tianjin Key Laboratory of Intelligent Robotics College of Artificial Intelligence Nankai University Research Laboratory of Machine Learning and Pervasive Computing Nankai University
Visual tele-observation is an effective way for intelligent monitoring and protection of ecology and the natural *** from pedestrian or rigid body detection,wildlife detection in natural scenes face more complex probl... 详细信息
来源: 评论
Design and Implementation of a Robotic Testbench for Analyzing Pincer Grip Execution in Human Specimen Hands
Design and Implementation of a Robotic Testbench for Analyzi...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Nikolas Wilhelm Claudio Glowalla Sami Haddadin Julian Schote Hannes Höppner Patrick van der Smagt Maximilian Karl Rainer Burgkart Department of Orthopedics and Sports Orthopedics Klinikum Rechts der Isar School of Medicine Munich Germany Munich Institute of Robotics and Machine Intelligence Technical University of Munich Munich Germany Humanoid Robotics Laboratory Berliner Hochschule für Technik Berlin Germany Machine Learning Research Lab Volkswagen Group Munich Germany
This study presents an innovative test rig engineered to explore the kinematic and viscoelastic characteristics of human specimen hands. The rig features eight force-controlled motors linked to muscle tendons, enablin... 详细信息
来源: 评论
Full Shot Predictions for the DIII-D Tokamak via Deep Recurrent Networks
arXiv
收藏 引用
arXiv 2024年
作者: Char, Ian Chung, Youngseog Abbate, Joseph Kolemen, Egemen Schneider, Jeff Machine Learning Department Carnegie Mellon University United States Princeton Plasma Physics Laboratory United States Department of Mechanical and Aerospace Engineering Princeton Plasma Physics Laboratory Princeton University United States Robotics Institute Carnegie Mellon University United States
Although tokamaks are one of the most promising devices for realizing nuclear fusion as an energy source, there are still key obstacles when it comes to understanding the dynamics of the plasma and controlling it. As ... 详细信息
来源: 评论
Synchronization in interacting networks of Hodgkin-Huxley neurons
Synchronization in interacting networks of Hodgkin-Huxley ne...
收藏 引用
Saratov Fall Meeting 2021: Computational Biophysics and Nanobiophotonics
作者: Andreev, Andrey V. Maksimenko, Vladimir A. Neuroscience and Cognivite Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Universitetskaya Str. 1 Innopolis 420500 Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University A. Nevskogo ul. 14 Kaliningrad236016 Russia
We consider a network of networks consisting of small input neural network and four small-world subnetworks Hodgkin-Huxley neurons. Input network receives an external signal and transfers it to subnetworks via excita-... 详细信息
来源: 评论
learning Barrier-Certified Polynomial Dynamical Systems for Obstacle Avoidance with Robots
Learning Barrier-Certified Polynomial Dynamical Systems for ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Martin Schonger Hugo T. M. Kussaba Lingyun Chen Luis Figueredo Abdalla Swikir Aude Billard Sami Haddadin Munich Institute of Robotics and Machine Intelligence (MIRMI) Technical University of Munich (TUM) Germany School of Computer Science University of Nottingham UK Omar Al-Mukhtar University (OMU) Albaida Libya Learning Algorithms and Systems Laboratory EPFL Switzerland
Established techniques that enable robots to learn from demonstrations are based on learning a stable dynamical system (DS). To increase the robots’ resilience to perturbations during tasks that involve static obstac... 详细信息
来源: 评论
Source-level analysis of brain activity in the process of learning and retrieving new information  5
Source-level analysis of brain activity in the process of le...
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Makarov, Vladimir Grubov, Vadim Kurkin, Semen Smirnov, Nikita Neuroscience and Cognitive Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
In this paper, we discovered the increase in EEG power in the theta frequency range in the occipital cortex during a visual analysis of new information and the power decrease in the alpha range in the temporal lobe du... 详细信息
来源: 评论
Quasi-movements as an intermediate type of motion  5
Quasi-movements as an intermediate type of motion
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Smirnov, Nikita M. Kurkin, Semen Neuroscience and Cognitive Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
This paper discusses the three distinct types of motor activity, namely quasi, real, and imagery. Quasi-motion is voluntary movements that are minimized to the point that finally become undetectable by objective measu... 详细信息
来源: 评论
Biomarkers of brain activity for the performance evaluation in the process of solving cognitive tasks  5
Biomarkers of brain activity for the performance evaluation ...
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Badarin, Artem Smirnov, Nikita Kurkin, Semen Neuroscience and Cognitive Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
In this paper, we analyze the brain activity during the execution by the subject of simple cognitive tasks associated with visual attention and symbol perception. We obtain biomarkers of brain activity in the process ... 详细信息
来源: 评论
Comparison on brain activity for mechanical imagery and execution: a brief review  5
Comparison on brain activity for mechanical imagery and exec...
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Chepurova, Alla Kurkin, Semen Neuroscience and Cognitive Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
With this review we summarize the current state of scientific studies in the field of MI (motor imagery) and ME (motor execution). We composed brain map and description which correlate different brain areas with type ... 详细信息
来源: 评论
Exploration via planning for information about the optimal trajectory  22
Exploration via planning for information about the optimal t...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Viraj Mehta Ian Char Joseph Abbate Rory Conlin Mark D. Boyer Stefano Ermon Jeff Schneider Willie Neiswanger Robotics Institute Machine Learning Department Carnegie Mellon University Princeton University Princeton Plasma Physics Laboratory Computer Science Department Stanford University
Many potential applications of reinforcement learning (RL) are stymied by the large numbers of samples required to learn an effective policy. This is especially true when applying RL to real-world control tasks, e.g. ...
来源: 评论