咨询与建议

限定检索结果

文献类型

  • 33 篇 会议
  • 24 篇 期刊文献

馆藏范围

  • 57 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 40 篇 工学
    • 16 篇 计算机科学与技术...
    • 11 篇 生物医学工程(可授...
    • 11 篇 软件工程
    • 10 篇 控制科学与工程
    • 10 篇 生物工程
    • 7 篇 机械工程
    • 6 篇 信息与通信工程
    • 4 篇 光学工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 电气工程
    • 2 篇 化学工程与技术
    • 2 篇 石油与天然气工程
    • 2 篇 网络空间安全
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 核科学与技术
  • 27 篇 理学
    • 19 篇 生物学
    • 10 篇 数学
    • 5 篇 物理学
    • 4 篇 系统科学
    • 2 篇 化学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地球物理学
  • 5 篇 医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 5 篇 药学(可授医学、理...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 农学

主题

  • 3 篇 brain
  • 3 篇 robots
  • 2 篇 complex networks
  • 2 篇 object detection
  • 2 篇 reinforcement le...
  • 2 篇 dynamical system...
  • 2 篇 task analysis
  • 2 篇 image segmentati...
  • 2 篇 neural networks
  • 2 篇 trajectories
  • 2 篇 computational mo...
  • 2 篇 trajectory
  • 2 篇 feature extracti...
  • 2 篇 uncertainty
  • 2 篇 accuracy
  • 2 篇 data models
  • 2 篇 training
  • 2 篇 cost function
  • 1 篇 parallel process...
  • 1 篇 segmentation

机构

  • 11 篇 center for neuro...
  • 10 篇 neuroscience and...
  • 4 篇 machine learning...
  • 4 篇 state key labora...
  • 3 篇 tianjin key labo...
  • 3 篇 intelligent comp...
  • 3 篇 research laborat...
  • 3 篇 princeton plasma...
  • 3 篇 center for neuro...
  • 3 篇 cell technology ...
  • 3 篇 neuroscience and...
  • 3 篇 robotics institu...
  • 3 篇 neurotechnology ...
  • 2 篇 college of compu...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 laboratory of bi...
  • 2 篇 department of nu...
  • 2 篇 department of co...
  • 2 篇 robotics institu...

作者

  • 5 篇 han zhi
  • 4 篇 kurkin semen
  • 4 篇 marc toussaint
  • 3 篇 kazantsev victor...
  • 3 篇 wan dai
  • 3 篇 char ian
  • 3 篇 yunwei xin
  • 3 篇 schneider jeff
  • 3 篇 wang yao
  • 3 篇 hongpeng wang
  • 3 篇 kazantsev victor
  • 3 篇 tang yandong
  • 3 篇 zengchang qin
  • 2 篇 neiswanger willi...
  • 2 篇 abbate joseph
  • 2 篇 lin shao-bo
  • 2 篇 badarin a.a.
  • 2 篇 sami haddadin
  • 2 篇 chung youngseog
  • 2 篇 smirnov nikita

语言

  • 56 篇 英文
  • 1 篇 其他
检索条件"机构=Machine Learning and Robotics Laboratory"
57 条 记 录,以下是21-30 订阅
排序:
Agent self-assessment: Determining policy quality without execution
Agent self-assessment: Determining policy quality without ex...
收藏 引用
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement learning, (ADPRL)
作者: Alexander Hans Siegmund Duell Steffen Udluft Neuroinformatics and Cognitive Robotics Laboratory Ilmenau University of Technology Ilmenau Germany Machine Learning Group Berlin Institute of Technology Berlin Germany Intelligent Systems and Control Siemens AG Munich Germany
With the development of data-efficient reinforcement learning (RL) methods, a promising data-driven solution for optimal control of complex technical systems has become available. For the application of RL to a techni... 详细信息
来源: 评论
Design and Implementation of a Robotic Testbench for Analyzing Pincer Grip Execution in Human Specimen Hands
Design and Implementation of a Robotic Testbench for Analyzi...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Nikolas Wilhelm Claudio Glowalla Sami Haddadin Julian Schote Hannes Höppner Patrick van der Smagt Maximilian Karl Rainer Burgkart Department of Orthopedics and Sports Orthopedics Klinikum Rechts der Isar School of Medicine Munich Germany Munich Institute of Robotics and Machine Intelligence Technical University of Munich Munich Germany Humanoid Robotics Laboratory Berliner Hochschule für Technik Berlin Germany Machine Learning Research Lab Volkswagen Group Munich Germany
This study presents an innovative test rig engineered to explore the kinematic and viscoelastic characteristics of human specimen hands. The rig features eight force-controlled motors linked to muscle tendons, enablin... 详细信息
来源: 评论
Changing functional connectivity during solving cognitive tasks: fNIRS study
Changing functional connectivity during solving cognitive ta...
收藏 引用
Saratov Fall Meeting 2021: Computational Biophysics and Nanobiophotonics
作者: Badarin, A.A. Antipov, V.M. Grubov, V.V. Kurkin, S.A. Neuroscience and Cognivite Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Universitetskaya Str. 1 Innopolis 420500 Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University A. Nevskogo ul. 14 Kaliningrad236016 Russia Department of Theoretical Cybernetics Saint Petersburg State University University Embankment 7/9 Saint Petersburg199034 Russia
In this paper, we present an analysis of the dynamics of functional connectivity of the cerebral cortical network using near-infrared spectroscopy during human solutions to simple cognitive tasks. A task-based on the ... 详细信息
来源: 评论
Effective Tensor Completion via Element-wise Weighted Low-rank Tensor Train with Overlapping Ket Augmentation
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Yang Wang, Yao Han, Zhi Chen, Xi'ai Tang, Yandong The State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China The Center for Intelligent Decision-Making and Machine Learning School of Mangement Xi'an Jiaotong University Xi'An710049 China
In recent years, there have been an increasing number of applications of tensor completion based on the tensor train (TT) format because of its efficiency and effectiveness in dealing with higher-order tensor data. Ho... 详细信息
来源: 评论
Chaotic Change of Extracellular Matrix Molecules Concentration in the Presence of Periodically Varying Neuronal Firing Rate  20th
Chaotic Change of Extracellular Matrix Molecules Concentrati...
收藏 引用
20th International Conference on Mathematical Modeling and Supercomputer Technologies, MMST 2020
作者: Rozhnova, Maiya A. Bandenkov, Daniil V. Kazantsev, Victor B. Pankratova, Evgeniya V. Department of Applied Mathematics Institute of Information Technologies Mathemaics and Mechanics Lobachevsky State University of Nizhni Novgorod Nizhny Novgorod Russia Neurotechnology Department Lobachevsky State University of Nizhni Novgorod Nizhny Novgorod Russia Neuroscience and Cognitive Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center of Neurotechnologies and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
Transmission and processing of information in the brain are highly complicated processes that are defined by a lot of non-trivial interconnections of structural elements of neural networks. To shed light on peculiarit... 详细信息
来源: 评论
Hybrid moving object detection system based on key frame extraction
Hybrid moving object detection system based on key frame ext...
收藏 引用
IEEE Conference on Industrial Electronics and Applications (ICIEA)
作者: Yu Du Xueyao Wang Shi-Ting Wang Shuangshuang Xue Zengchang Qin Intelligent Computing and Machine Learning Laboratory School of ASEE Beihang University Beijing China School of Automation Science and Electronic Engineering (ASEE) Beihang University Beijing China Robotics Institute Carnegie Mellon University USA
In this paper we construct a hybrid moving object detection system. In this system, we first use the frame difference method to extract key frames in a given video sequence, then use the optical flow method and the HS... 详细信息
来源: 评论
Full Shot Predictions for the DIII-D Tokamak via Deep Recurrent Networks
arXiv
收藏 引用
arXiv 2024年
作者: Char, Ian Chung, Youngseog Abbate, Joseph Kolemen, Egemen Schneider, Jeff Machine Learning Department Carnegie Mellon University United States Princeton Plasma Physics Laboratory United States Department of Mechanical and Aerospace Engineering Princeton Plasma Physics Laboratory Princeton University United States Robotics Institute Carnegie Mellon University United States
Although tokamaks are one of the most promising devices for realizing nuclear fusion as an energy source, there are still key obstacles when it comes to understanding the dynamics of the plasma and controlling it. As ... 详细信息
来源: 评论
Exploration via Planning for Information about the Optimal Trajectory
arXiv
收藏 引用
arXiv 2022年
作者: Mehta, Viraj Char, Ian Abbate, Joseph Conlin, Rory Boyer, Mark D. Ermon, Stefano Schneider, Jeff Neiswanger, Willie Robotics Institute United States Machine Learning Department Carnegie Mellon University United States Princeton Plasma Physics Laboratory United States Princeton University United States Computer Science Department Stanford University United States
Many potential applications of reinforcement learning (RL) are stymied by the large numbers of samples required to learn an effective policy. This is especially true when applying RL to real-world control tasks, e.g. ... 详细信息
来源: 评论
Deep learning for Koopman-based Dynamic Movement Primitives
arXiv
收藏 引用
arXiv 2023年
作者: Han, Tyler Henshaw, Carl Glen The Naval Center for Space Technology U.S. Naval Research Laboratory WashingtonDC20375 United States The Robotics and Machine Learning Section Naval Center for Space Technology U.S. Naval Research Laboratory WashingtonDC20375 United States
The challenge of teaching robots to perform dexterous manipulation, dynamic locomotion, or whole-body manipulation from a small number of demonstrations is an important research field that has attracted interest from ... 详细信息
来源: 评论
learning Barrier-Certified Polynomial Dynamical Systems for Obstacle Avoidance with Robots
Learning Barrier-Certified Polynomial Dynamical Systems for ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Martin Schonger Hugo T. M. Kussaba Lingyun Chen Luis Figueredo Abdalla Swikir Aude Billard Sami Haddadin Munich Institute of Robotics and Machine Intelligence (MIRMI) Technical University of Munich (TUM) Germany School of Computer Science University of Nottingham UK Omar Al-Mukhtar University (OMU) Albaida Libya Learning Algorithms and Systems Laboratory EPFL Switzerland
Established techniques that enable robots to learn from demonstrations are based on learning a stable dynamical system (DS). To increase the robots’ resilience to perturbations during tasks that involve static obstac... 详细信息
来源: 评论