咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 13 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 工学
    • 6 篇 计算机科学与技术...
    • 5 篇 软件工程
    • 3 篇 信息与通信工程
    • 2 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 控制科学与工程
    • 1 篇 地质资源与地质工...
    • 1 篇 航空宇航科学与技...
    • 1 篇 生物工程
    • 1 篇 安全科学与工程
  • 7 篇 理学
    • 4 篇 数学
    • 2 篇 物理学
    • 2 篇 生物学
    • 1 篇 化学
    • 1 篇 系统科学
  • 3 篇 管理学
    • 2 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
  • 1 篇 农学
    • 1 篇 作物学
    • 1 篇 农业资源与环境

主题

  • 1 篇 extrapolation
  • 1 篇 dpa
  • 1 篇 clinical researc...
  • 1 篇 adversarial mach...
  • 1 篇 multi-task learn...
  • 1 篇 fake detection
  • 1 篇 establishing
  • 1 篇 benchmarking
  • 1 篇 machine learning
  • 1 篇 digital soil map...
  • 1 篇 open data
  • 1 篇 dataset collecti...
  • 1 篇 grading
  • 1 篇 pedometrics
  • 1 篇 molecular dynami...
  • 1 篇 satellite imager...
  • 1 篇 thereby
  • 1 篇 convolutional ne...

机构

  • 3 篇 machine learning...
  • 2 篇 hedps capt colle...
  • 2 篇 mendel universit...
  • 2 篇 university of wi...
  • 2 篇 woodwell climate...
  • 2 篇 yuanpei college ...
  • 2 篇 tokyo university...
  • 2 篇 lisah univ. mont...
  • 2 篇 state key lab of...
  • 2 篇 academy for adva...
  • 2 篇 bern university ...
  • 2 篇 the university o...
  • 2 篇 osnabrück univer...
  • 2 篇 college of chemi...
  • 2 篇 büchi labortechn...
  • 2 篇 agroscope field-...
  • 2 篇 federal universi...
  • 2 篇 university of ch...
  • 2 篇 federal universi...
  • 2 篇 dp technology

作者

  • 2 篇 tavares tiago r.
  • 2 篇 zhang duo
  • 2 篇 cai chun
  • 2 篇 costa marcelo m.
  • 2 篇 valente domingos...
  • 2 篇 zandonadi rodrig...
  • 2 篇 zhang linfeng
  • 2 篇 paetzold stefan
  • 2 篇 lukas vojtech
  • 2 篇 ruehlmann joerg
  • 2 篇 tavakoli hamed
  • 2 篇 wetterlind johan...
  • 2 篇 pham anh-duy
  • 2 篇 schroeter ingmar
  • 2 篇 musekamp daniel
  • 2 篇 scholten thomas
  • 2 篇 york darrin m.
  • 2 篇 kramer eckart
  • 2 篇 schmidinger jona...
  • 2 篇 vogel sebastian

语言

  • 10 篇 英文
  • 2 篇 其他
检索条件"机构=Machine Learning and Simulation Lab"
13 条 记 录,以下是1-10 订阅
排序:
Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric Partial Differential Equations  41
Vectorized Conditional Neural Fields: A Framework for Solvin...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Hagnberger, Jan Kalimuthu, Marimuthu Musekamp, Daniel Niepert, Mathias Machine Learning and Simulation Lab Institute for Artificial Intelligence University of Stuttgart Stuttgart Germany Germany Germany
Transformer models are increasingly used for solving Partial Differential Equations (PDEs). Several adaptations have been proposed, all of which suffer from the typical problems of Transformers, such as quadratic memo...
来源: 评论
Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric Partial Differential Equations
arXiv
收藏 引用
arXiv 2024年
作者: Hagnberger, Jan Kalimuthu, Marimuthu Musekamp, Daniel Niepert, Mathias Machine Learning and Simulation Lab Institute for Artificial Intelligence University of Stuttgart Stuttgart Germany Germany
Transformer models are increasingly used for solving Partial Differential Equations (PDEs). Several adaptations have been proposed, all of which suffer from the typical problems of Transformers, such as quadratic memo... 详细信息
来源: 评论
Vectorized conditional neural fields: a framework for solving time-dependent parametric partial differential equations  24
Vectorized conditional neural fields: a framework for solvin...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Jan Hagnberger Marimuthu Kalimuthu Daniel Musekamp Mathias Niepert Machine Learning and Simulation Lab Institute for Artificial Intelligence University of Stuttgart Stuttgart Germany Machine Learning and Simulation Lab Institute for Artificial Intelligence University of Stuttgart Stuttgart Germany and Stuttgart Center for Simulation Science (SimTech) and International Max Planck Research School for Intelligent Systems (IMPRS-IS) Machine Learning and Simulation Lab Institute for Artificial Intelligence University of Stuttgart Stuttgart Germany and International Max Planck Research School for Intelligent Systems (IMPRS-IS)
Transformer models are increasingly used for solving Partial Differential Equations (PDEs). Several adaptations have been proposed, all of which suffer from the typical problems of Transformers, such as quadratic memo...
来源: 评论
Canonical convolutional neural networks
arXiv
收藏 引用
arXiv 2022年
作者: Veeramacheneni, Lokesh Wolter, Moritz Klein, Reinhard Garcke, Jochen Department of Computer Science Hochschule Bonn-Rhein-Sieg Fraunhofer Center for Machine Learning SCAI Germany High Performance Computing and Analytics Lab University of Bonn Fraunhofer Center for Machine Learning SCAI Germany Department of Computer Science University of Bonn Germany Fraunhofer Center for Machine Learning SCAI Institute for Numerical Simulation University of Bonn Germany
We introduce canonical weight normalization for convolutional neural networks. Inspired by the canonical tensor decomposition, we express the weight tensors in so-called canonical networks as scaled sums of outer vect... 详细信息
来源: 评论
Wavelet-Packets for Deepfake Image Analysis and Detection
arXiv
收藏 引用
arXiv 2021年
作者: Wolter, Moritz Blanke, Felix Heese, Raoul Garcke, Jochen High Performance Computing & Analytics Lab Universität Bonn Germany Fraunhofer SCAI University of Bonn Germany Fraunhofer Center for Machine Learning Fraunhofer ITWM Germany Institute for Numerical Simulation University of Bonn Germany Fraunhofer Center for Machine Learning Fraunhofer SCAI Germany
As neural networks become able to generate realistic artificial images, they have the potential to improve movies, music, video games and make the internet an even more creative and inspiring place. Yet, the latest te... 详细信息
来源: 评论
LimeSoDa: A Dataset Collection for Benchmarking of machine learning Regressors in Digital Soil Mapping
arXiv
收藏 引用
arXiv 2025年
作者: Schmidinger, Jonas Vogel, Sebastian Barkov, Viacheslav Pham, Anh-Duy Gebbers, Robin Tavakoli, Hamed Correa, Jose Tavares, Tiago R. Filippi, Patrick Jones, Edward J. Lukas, Vojtech Boenecke, Eric Ruehlmann, Joerg Schroeter, Ingmar Kramer, Eckart Paetzold, Stefan Kodaira, Masakazu Wadoux, Alexandre M.J.-C. Bragazza, Luca Metzger, Konrad Huang, Jingyi Valente, Domingos S.M. Safanelli, Jose L. Bottega, Eduardo L. Dalmolin, Ricardo S.D. Farkas, Csilla Steiger, Alexander Horst, Taciara Z. Ramirez-Lopez, Leonardo Scholten, Thomas Stumpf, Felix Rosso, Pablo Costa, Marcelo M. Zandonadi, Rodrigo S. Wetterlind, Johanna Atzmueller, Martin Osnabrück University Joint Lab Artificial Intelligence and Data Science Osnabrück Germany Department of Agromechatronics Potsdam Germany Piracicaba Brazil The University of Sydney Sydney Institute of Agriculture Sydney Australia Mendel University in Brno Department of Agrosystems and Bioclimatology Brno Czech Republic Leibniz Institute of Vegetable and Ornamental Crops Next Generation Horticultural Systems Grossbeeren Germany Eberswalde University for Sustainable Development Landscape Management and Nature Conservation Eberswalde Germany Soil Science and Soil Ecology Bonn Germany Tokyo University of Agriculture and Technology Institute of Agriculture Tokyo Japan LISAH Univ. Montpellier AgroParisTech INRAE IRD L'Institut Agro Montpellier France Agroscope Field-Crop Systems and Plant Nutrition Nyon Switzerland University of Wisconsin-Madison Department of Soil Science Madison United States Federal University of Viçosa Department of Agricultural Engineering Viçosa Brazil Woodwell Climate Research Center Falmouth United States Academic Coordination Santa Maria Brazil Soil Department Santa Maria Brazil Division of Environment and Natural Resources Aas Norway University of Rostock Chair of Geodesy and Geoinformatics Rostock Germany Federal Technological University of Paraná Dois Vizinhos Brazil BÜCHI Labortechnik AG Data Science Department Flawil Switzerland Imperial College London Imperial College Business School London United Kingdom University of Tübingen Department of Geosciences Tübingen Germany University of Tübingen DFG Cluster of Excellence Machine Learning for Science’ Germany Bern University of Applied Sciences Competence Center for Soils Zollikofen Switzerland Simulation and Data Science Müncheberg Germany Federal University of Jataí Institute of Agricultural Sciences Jatai Brazil Federal University of Mato Grosso Instute of Agricultural and Environmental Scinces Sinop Brazil Department of Soil and Environment Skara
Digital soil mapping (DSM) relies on a broad pool of statistical methods, yet determining the optimal method for a given context remains challenging and contentious. Benchmarking studies on multiple datasets are neede... 详细信息
来源: 评论
FLIGHTSCOPE: AN EXPERIMENTAL COMPARATIVE REVIEW OF AIRCRAFT DETECTION ALGORITHMS IN SATELLITE IMAGERY
arXiv
收藏 引用
arXiv 2024年
作者: Ghazouali, Safouane EL Venturini, Francesca Rüegsegger, Michael Gucciardi, Arnaud Venturi, Nicola Michelucci, Umberto Machine Learning Research & Development TOELT LLC AI lab Winterthur Switzerland Institute of Applied Mathematics & Physics ZHAW - Zurich University of Applied Sciences Winterthur Switzerland Competence Center for AI and Simulation Armasuisse S+T Thun Switzerland Computer Science Department Lucerne University of Applied Science and Arts Luzern Switzerland
Object detection in remotely sensed satellite pictures is fundamental in many fields such as biophysical, and environmental monitoring. While deep learning algorithms are constantly evolving, they have been mostly imp... 详细信息
来源: 评论
DRG-Net: Interactive Joint learning of Multi-lesion Segmentation and Classification for Diabetic Retinopathy Grading
arXiv
收藏 引用
arXiv 2022年
作者: Tusfiqur, Hasan Md Nguyen, Duy M.H. Truong, Mai T.N. Nguyen, Triet A. Nguyen, Binh T. Barz, Michael Profitlich, Hans-Jürgen Than, Ngoc T.T. Le, Ngan Xie, Pengtao Sonntag, Daniel Germany Machine Learning and Simulation Lab University of Stuttgart Germany Department of Multimedia Engineering Dongguk University Korea Republic of Department of Mathematics University of Architecture Ho Chi Minh City Viet Nam AISIA Lab University of Science VNUHCM Viet Nam Byers Eye Institute Stanford University United States Department of Computer Science and Computer Engineering University of Arkansas United States Department of Electrical and Computer Engineering University of California San Diego United States Applied Artificial Intelligence Oldenburg University Germany
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine ... 详细信息
来源: 评论
LimeSoDa: A dataset collection for benchmarking of machine learning regressors in digital soil mapping
收藏 引用
Geoderma 2025年 459卷
作者: Schmidinger, Jonas Vogel, Sebastian Barkov, Viacheslav Pham, Anh-Duy Gebbers, Robin Tavakoli, Hamed Correa, Jose Tavares, Tiago R. Filippi, Patrick Jones, Edward J. Lukas, Vojtech Boenecke, Eric Ruehlmann, Joerg Schroeter, Ingmar Kramer, Eckart Paetzold, Stefan Kodaira, Masakazu Wadoux, Alexandre M.J.-C. Bragazza, Luca Metzger, Konrad Huang, Jingyi Valente, Domingos S.M. Safanelli, Jose L. Bottega, Eduardo L. Dalmolin, Ricardo S.D. Farkas, Csilla Steiger, Alexander Horst, Taciara Z. Ramirez-Lopez, Leonardo Scholten, Thomas Stumpf, Felix Rosso, Pablo Costa, Marcelo M. Zandonadi, Rodrigo S. Wetterlind, Johanna Atzmueller, Martin Osnabrück University Joint Lab Artificial Intelligence and Data Science Osnabrück Germany Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) Department of Agromechatronics Potsdam Germany University of São Paulo (USP) Center of Nuclear Energy in Agriculture (CENA) Piracicaba Brazil The University of Sydney Sydney Institute of Agriculture Sydney Australia Mendel University in Brno Department of Agrosystems and Bioclimatology Brno Czech Republic Leibniz Institute of Vegetable and Ornamental Crops Next Generation Horticultural Systems Grossbeeren Germany Eberswalde University for Sustainable Development Landscape Management and Nature Conservation Eberswalde Germany University of Bonn Institute of Crop Science and Resource Conservation (INRES)—Soil Science and Soil Ecology Bonn Germany Tokyo University of Agriculture and Technology Institute of Agriculture Tokyo Japan LISAH Univ. Montpellier AgroParisTech INRAE IRD L'Institut Agro Montpellier France Agroscope Field-Crop Systems and Plant Nutrition Nyon Switzerland University of Wisconsin-Madison Department of Soil Science Madison United States Federal University of Viçosa Department of Agricultural Engineering Viçosa Brazil Woodwell Climate Research Center Falmouth United States Federal University of Santa Maria (UFSM) Academic Coordination Santa Maria Brazil Federal University of Santa Maria (UFSM) Soil Department Santa Maria Brazil Norwegian Institute of Bioeconomy Research (NIBIO) Division of Environment and Natural Resources Aas Norway University of Rostock Chair of Geodesy and Geoinformatics Rostock Germany Federal Technological University of Paraná Dois Vizinhos Brazil BÜCHI Labortechnik AG Data Science Department Flawil Switzerland Imperial College London Imperial College Business School London United Kingdom University of Tübingen Department of Geosciences Tübingen Germany University of Tübingen DFG Cluster of Excellence ‘Machine Learning for Science’ Germany Bern Universi
Digital soil mapping (DSM) relies on a broad pool of statistical methods, yet determining the optimal method for a given context remains challenging and contentious. Benchmarking studies on multiple datasets are neede... 详细信息
来源: 评论
DPA-2:a large atomic model as a multitask learner
收藏 引用
npj Computational Materials 2024年 第1期10卷 185-199页
作者: Duo Zhang Xinzijian Liu Xiangyu Zhang Chengqian Zhang Chun Cai Hangrui Bi Yiming Du Xuejian Qin Anyang Peng Jiameng Huang Bowen Li Yifan Shan Jinzhe Zeng Yuzhi Zhang Siyuan Liu Yifan Li Junhan Chang Xinyan Wang Shuo Zhou Jianchuan Liu Xiaoshan Luo Zhenyu Wang Wanrun Jiang Jing Wu Yudi Yang Jiyuan Yang Manyi Yang Fu-Qiang Gong Linshuang Zhang Mengchao Shi Fu-Zhi Dai Darrin M.York Shi Liu Tong Zhu Zhicheng Zhong Jian Lv Jun Cheng Weile Jia Mohan Chen Guolin Ke Weinan E Linfeng Zhang Han Wang AI for Science Institute BeijingP.R.China DP Technology BeijingP.R.China Academy for Advanced Interdisciplinary Studies Peking UniversityBeijingP.R.China State Key Lab of Processors Institute of Computing TechnologyChinese Academy of SciencesBeijingP.R.China University of Chinese Academy of Sciences BeijingP.R.China HEDPS CAPTCollege of EngineeringPeking UniversityBeijingP.R.China Ningbo Institute of Materials Technology and Engineering Chinese Academy of SciencesNingboP.R.China CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of SciencesNingboP.R.China School of Electronics Engineering and Computer Science Peking UniversityBeijingP.R.China Shanghai Engineering Research Center of Molecular Therapeutics&New Drug Development School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiP.R.China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine and Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayNJUSA Department of Chemistry Princeton UniversityPrincetonNJUSA College of Chemistry and Molecular Engineering Peking UniversityBeijingP.R.China Yuanpei College Peking UniversityBeijingP.R.China School of Electrical Engineering and Electronic Information Xihua UniversityChengduP.R.China State Key Laboratory of Superhard Materials College of PhysicsJilin UniversityChangchunP.R.China Key Laboratory of Material Simulation Methods&Software of Ministry of Education College of PhysicsJilin UniversityChangchunP.R.China International Center of Future Science Jilin UniversityChangchunP.R.China Key Laboratory for Quantum Materialsof Zhejiang Province Department of PhysicsSchool of ScienceWestlake UniversityHangzhouP.R.China Atomistic Simulations Italian Institute of TechnologyGenovaItaly State Key Laboratory of Physical Chemistry of Solid Surface iChEMCollege of Chemistry and Chemical EngineeringXiame
The rapid advancements in artificial intelligence(AI)are catalyzing transformative changes in atomic modeling,simulation,and ***-driven potential energy models havedemonstrated the capability to conduct large-scale,lo... 详细信息
来源: 评论