This study aimed to test a protocol of measurements based on Biophotogrammetry to Analysis of Respiratory Mechanics (BARM) in healthy children. Seventeen normal spirometric children (six male and 11 female) were teste...
详细信息
This study aimed to test a protocol of measurements based on Biophotogrammetry to Analysis of Respiratory Mechanics (BARM) in healthy children. Seventeen normal spirometric children (six male and 11 female) were tested. Their performed maneuvers of forced inspiratory vital capacity were recorded in the supine position. The images were acquired by a digital camera, laterally placed to the trunk. Surface markers allowed that the files, exported to CorelDraw® software, were processed by irregular trapezoids paths. Compartments were defined in the thoracic (TX), abdominal (AB) and the chest wall (CW). They were defined at the end of an inspiration and expiration, both maximum, controlled by a digital spirometer. The result showed that the measured areas at the inspiratory and expiratory periods were statistically different (p
Authors have emphasized the need for previous care in order to perform reliable bioimpedance acquisition. Despite of this need some authors have reported that intense physical training has little effect on Bioimpedanc...
Authors have emphasized the need for previous care in order to perform reliable bioimpedance acquisition. Despite of this need some authors have reported that intense physical training has little effect on Bioimpedance Analysis (BIA), while other ones have observed significant effects on bioimpedance parameters in the same condition, leading to body composition estimates considered incompatible with human physiology. The aim of this work was to quantify the changes in bioimpedance parameters, as well as in body fluids estimates by BIA, after four hours of intense physical activity with free water replacement in young males. Xitron Hydra 4200 equipment was used to acquire bioimpedance data before and immediately after the physical training. After data acquisition body fluids were estimates from bioimpedance parameters. Height and weight of all subjects were also acquired to the nearest 0.1 cm and 0.1 kg, respectively. Results point that among the bioimpedance parameter, extracellular resistance presented the most coherent behavior, leading to reliable estimates of the extracellular fluid and part of the total body water. Results also show decreases in height and weight of the participants, which were associated to the decrease in body hydration and in intervertebral discs.
A prototype concurrent engineering tool has been developed for the preliminary design of composite topside structures for modern navy warships. This tool, named GELS for the Concurrent engineering of Layered Structure...
详细信息
A prototype concurrent engineering tool has been developed for the preliminary design of composite topside structures for modern navy warships. This tool, named GELS for the Concurrent engineering of Layered Structures, provides designers with an immediate assessment of the impacts of their decisions on several disciplines which are important to the performance of a modern naval topside structure, including electromagnetic interference effects (EMI), radar cross section (RCS), structural integrity, cost, and weight. Preliminary analysis modules in each of these disciplines are integrated to operate from a common set of design variables and a common materials database. Performance in each discipline and an overall fitness function for the concept are then evaluated. A graphical user interface (GUI) is used to define requirements and to display the results from the technical analysis modules. Optimization techniques, including feasible sequential quadratic programming (FSQP) and exhaustive search are used to modify the design variables to satisfy all requirements simultaneously. The development of this tool, the technical modules, and their integration are discussed noting the decisions and compromises required to develop and integrate the modules into a prototype conceptual design tool.
暂无评论