Observation of fluid flow in a segmented self-siphon has been conducted experimentally and a model using molecular dynamics method is used to study the phenomenon in simulation. Influence of number of parts used in ve...
Observation of fluid flow in a segmented self-siphon has been conducted experimentally and a model using molecular dynamics method is used to study the phenomenon in simulation. Influence of number of parts used in vertical straight segments observed in the simulation is nearly similar to the result observed in experiment. Mismatch error between experiment and simulation results, in predicting whether water can flow in a configuration of segmented a self-siphon or not, has been found about 10.4 %. During the flow through the self-siphon water velocity decreases, especially in the semi-circle bends.
In an era of fiscal austerity, downsizing and unforgiving pressure upon human and economic capital, it is an Augean task to identify resources for fresh and creative work. The realities of the day and the practical de...
详细信息
In an era of fiscal austerity, downsizing and unforgiving pressure upon human and economic capital, it is an Augean task to identify resources for fresh and creative work. The realities of the day and the practical demands of more immediate fleet needs can often dictate higher priorities. Yet, the Navy must avoid eating its seed corn. Exercising both technical insight and management foresight, the fleet, the R&D community, the Office of the Chief of Naval Operations (OpNav) and the product engineering expertise of the Naval Surface Warfare Center (NSWC) are joined and underway with integrated efforts to marry new, fully demonstrated technologies and operational urgencies. Defense funding today cannot sponsor all work that can be mission-justified over the long term because budgets are insufficient to support product maturation within the classical development cycle. However, by rigorous technical filtering and astute engineering of both marketplace capabilities and currently available components, it is possible in a few select cases to compress and, in effect, integrate advanced development (6.3), engineering development (6.4), weapon procurement (WPN), ship construction (SCN), operation and maintenance (O&M,N) budgetary categories when fleet criticalities and technology opportunities can happily meet. In short, 6.3 funds can be applied directly to ''ripe gateways'' so modern technology is inserted into existing troubled or aging systems, sidestepping the lengthy, traditional development cycle and accelerating practical payoffs to recurrent fleet problems. To produce such constructive results has required a remarkable convergence of sponsor prescience and engineering workforce excellence. The paper describes, extensively, the philosophy of approach, transition strategy, polling of fleet needs, technology assessment, and management team requirements. The process for culling and selecting specific candidate tasks for SHARP sponsorship (matching operational need with t
暂无评论