A solution to trajectory-tracking control problem for a four-wheel-steering vehicle (4WS) is proposed using sliding-mode approach. The advantage of this controller over current control procedure is that it is applicab...
详细信息
A solution to trajectory-tracking control problem for a four-wheel-steering vehicle (4WS) is proposed using sliding-mode approach. The advantage of this controller over current control procedure is that it is applicable to a large class of vehicles with single or double steering and to a tracking velocity that is not necessarily constant. The sliding-mode approach make the solutions robust with respect to errors and disturbances, as demonstrated by the simulation results.
作者:
Omid ShakerniaYi MaT. John KooShankar SastryDept. of Electrical Engineering & Computer Science
University of California at Berkeley Berkeley CA94720-1774 U.S.A. Tak-Kuen John Koo received the B.Eng. degree in 1992 in Electronic Engineering and the M.Phil. in 1994 in Information Engineering both from the Chinese University of Hong Kong. From 1994 to 1995
he was a graduate student in Signal and Image Processing Institute at the University of Southern California. He is currently a Ph.D. Candidate in Electrical Engineering and Computer Sciences at the University of California at Berkeley. His research interests include nonlinear control theory hybrid systems inertial navigation systems with applications to unmanned aerial vehicles. He received the Distinguished M.Phil. Thesis Award of the Faculty of Engineering The Chinese University of Hong Kong in 1994. He was a consultant of SRI International in 1998. Currently he is the team leader of the Berkeley AeRobot Team and a delegate of The Graduate Assembly University of California at Berkeley. He is a student member of IEEE and SIAM. S. Shankar Sastry received his Ph.D. degree in 1981 from the University of California
Berkeley. He was on the faculty of MIT from 1980-82 and Harvard University as a Gordon McKay professor in 1994. He is currently a Professor of Electrical Engineering and Computer Sciences and Bioengineering and Director of the Electronics Research Laboratory at Berkeley. He has held visiting appointments at the Australian National University Canberra the University of Rome Scuola Normale and University of Pisa the CNRS laboratory LAAS in Toulouse (poste rouge) and as a Vinton Hayes Visiting fellow at the Center for Intelligent Control Systems at MIT. His areas of research are nonlinear and adaptive control robotic telesurgery control of hybrid systems and biological motor control. He is a coauthor (with M. Bodson) of “Adaptive Control: Stability Convergence and Robustness Prentice Hall 1989.” and (with R. Murray and Z. Li) of “A Mathematical Introduction to Robotic Manipulati
In this paper, we use computer vision as a feedback sensor in a control loop for landing an unmanned air vehicle (UAV) on a landing pad. The vision problem we address here is then a special case of the classic ego-mot...
详细信息
In this paper, we use computer vision as a feedback sensor in a control loop for landing an unmanned air vehicle (UAV) on a landing pad. The vision problem we address here is then a special case of the classic ego-motion estimation problem since all feature points lie on a planar surface (the landing pad). We study together the discrete and differential versions of the ego-motion estimation, in order to obtain both position and velocity of the UAV relative to the landing pad. After briefly reviewing existing algorithm for the discrete case, we present, in a unified geometric framework, a new estimation scheme for solving the differential case. We further show how the obtained algorithms enable the vision sensor to be placed in the feedback loop as a state observer for landing control. These algorithms are linear, numerically robust, and computationally inexpensive hence suitable for real-time implementation. We present a thorough performance evaluation of the motion estimation algorithms under varying levels of image measurement noise, altitudes of the camera above the landing pad, and different camera motions relative to the landing pad. A landing controller is then designed for a full dynamic model of the UAV. Using geometric nonlinear control theory, the dynamics of the UAV are decoupled into an inner system and outer system. The proposed control scheme is then based on the differential flatness of the outer system. For the overall closed-loop system, conditions are provided under which exponential stability can be guaranteed. In the closed-loop system, the controller is tightly coupled with the vision based state estimation and the only auxiliary sensor are accelerometers for measuring acceleration of the UAV. Finally, we show through simulation results that the designed vision-in-the-loop controller generates stable landing maneuvers even for large levels of image measurement noise. Experiments on a real UAV will be presented in future work.
A prototype concurrent engineering tool has been developed for the preliminary design of composite topside structures for modern navy warships. This tool, named GELS for the Concurrent Engineering of Layered Structure...
详细信息
A prototype concurrent engineering tool has been developed for the preliminary design of composite topside structures for modern navy warships. This tool, named GELS for the Concurrent Engineering of Layered Structures, provides designers with an immediate assessment of the impacts of their decisions on several disciplines which are important to the performance of a modern naval topside structure, including electromagnetic interference effects (EMI), radar cross section (RCS), structural integrity, cost, and weight. Preliminary analysis modules in each of these disciplines are integrated to operate from a common set of design variables and a common materials database. Performance in each discipline and an overall fitness function for the concept are then evaluated. A graphical user interface (GUI) is used to define requirements and to display the results from the technical analysis modules. Optimization techniques, including feasible sequential quadratic programming (FSQP) and exhaustive search are used to modify the design variables to satisfy all requirements simultaneously. The development of this tool, the technical modules, and their integration are discussed noting the decisions and compromises required to develop and integrate the modules into a prototype conceptual design tool.
暂无评论