Organosulfur materials are a sustainable alternative to the present-day layered oxide cathodes in lithium-based *** such organosulfur material that was intensely explored from the 1990s to early 2010s is 2,5-dimercapt...
详细信息
Organosulfur materials are a sustainable alternative to the present-day layered oxide cathodes in lithium-based *** such organosulfur material that was intensely explored from the 1990s to early 2010s is 2,5-dimercapto-1,3,4-thiadiazole(DMCT).However,research interest declined as the electrode reactions with DMCT were assumed to be too sluggish to be *** with the advances in metal-sulfur batteries,we revisit DMCT-based materials in the form of poly[tetrathio-2,5-(1,3,4-thiadiazole)],referred to as *** an appropriate choice of electrode design and electrolyte,pDMCT-S cathode paired with a Li-metal anode shows a capacity of 715 mA h g^(-1)and a Coulombic efficiency of 97.7%at a C/10 rate,thus quelling the concerns of sluggish ***,pDMCT-S shows significantly improved long-term cyclability compared to a sulfur *** into the origin of the stability reveals that the discharge product Li-DMCT in its mesomeric form can strongly bind to polysulfides,preventing their dissolution into the electrolyte and *** unique mechanism solves a critical problem faced by sulfur ***,this mechanism results in a stable performance of pDMCT-S with Na-metal cells as *** study opens the potential for exploring other organic materials that have inherent polysulfide sequestering capabilities,enabling long-life metal-sulfur batteries.
With the increasing use of micro-manufactured devices and the demand for low-cost fabrication techniques, this study presents a simple and scalable surface polishing method for laser etched acrylic using WELD-ON 4 acr...
详细信息
As global population rises,accompanied by escalating environmental pollution and climate change,numerous countries find themselves grappling with an acute scarcity of natural freshwater resources^([1]).Seawater desali...
详细信息
As global population rises,accompanied by escalating environmental pollution and climate change,numerous countries find themselves grappling with an acute scarcity of natural freshwater resources^([1]).Seawater desalination presents a compelling solution to this looming crisis,especially considering the oceans are Earth’s largest water reservoir^([2]).
By decoupling temperature and flow fields through symmetry-correlated laser scan sequences,ISO-FLUCS enables quasi-isothermal optofluidic microscale *** technique offers precise control over fluid manipulation while m...
详细信息
By decoupling temperature and flow fields through symmetry-correlated laser scan sequences,ISO-FLUCS enables quasi-isothermal optofluidic microscale *** technique offers precise control over fluid manipulation while minimizing thermal damage.
The electrocatalytic nitrate reduction reaction(NitRR)represents a promising approach toward achieving economically and environmentally sustainable ***,it remains a challenge to regulate the size effect of electrocata...
详细信息
The electrocatalytic nitrate reduction reaction(NitRR)represents a promising approach toward achieving economically and environmentally sustainable ***,it remains a challenge to regulate the size effect of electrocatalysts to optimize the catalytic activity and ammonia ***,the Cu-based catalysts were tailored at the atomic level to exhibit a size gradient ranging from single-atom catalysts(SACs,0.15–0.35 nm)to single-cluster catalysts(SCCs,1.0–2.8 nm)and nanoparticles(NPs,20–30 nm),with the aim of studying the size effect for the NO_(3)^(-)-to-NH_(3) reduction ***,the Cu SCCs exhibit enhanced metal–substrate and metal–metal interactions by taking advantageous features of Cu SACs and Cu ***,Cu SCCs achieve exceptional electrocatalytic performance for the NitRR with a maximum Faradaic efficiency of ca.96%NH_(3)and the largest yield rate of ca.1.99 mg·h^(-1)·cm^(-2) at-0.5 V *** hydrogen electrode(RHE).The theoretical calculation further reveals the size effect and coordination environment on the high catalytic activity and selectivity for the *** work provides a promising various size-controlled design strategy for aerogel-based catalysts effectively applied in various electrocatalytic reactions.
In recent years,sodium-ion capacitors have attracted attention due to their cost-effectiveness,high power density and similar manufacturing process to lithium-ion ***,the utilization of oxide electrodes in traditional...
详细信息
In recent years,sodium-ion capacitors have attracted attention due to their cost-effectiveness,high power density and similar manufacturing process to lithium-ion ***,the utilization of oxide electrodes in traditional sodium-ion capacitors restricts their further advancement due to the inherent low operating voltage and electrolyte consumption based on their energy storage *** address these challenges,we incorporated Zn,Cu,Ti,and other elements into Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2) to synthesize P2-type Na_(0.7)Ni_(0.28)Mn_(0.6)Zn_(0.05)Cu_(0.02)Ti_(0.05)O_(2) with a modulated entropy and pillaring *** the synergistic interplay between the interlayer pillar and the entropy modulation within the layers,the material exhibits exceptional toughness,effectively shielding it from detrimental phase transitions at elevated voltage *** a result,the material showcases outstanding kinetic properties and long-term cycling stability across the voltage *** integrating these materials with hierarchical porous carbon nanospheres to form a"rocking chair"sodium-ion capacitor,the hybrid full device delivers a high energy density(171 Wh·kg^(-1))and high power density(5245 W·kg^(-1)),as well as outstanding cycling stability(77% capacity retention after 3000 cycles).This work provides an effective material development route to realize simultaneously high energy and power for next-generation sodium-ion capacitors.
The application of all-solid-state Li-metal batteries with solid oxide electrolytes is hindered by interfacial issues,especially the solid electrolyte/Li-metal *** work introduced a uniform indium film layer on the su...
详细信息
The application of all-solid-state Li-metal batteries with solid oxide electrolytes is hindered by interfacial issues,especially the solid electrolyte/Li-metal *** work introduced a uniform indium film layer on the surface of Na^(+)super ionic conductor(NASICON)solid electrolyte Li_(1.5)Al_(0.5)Ge_(1.5)P_(3)O_(12)(LAGP),which promotes the intimate contact between Li metal and solid electrolyte and hinders the side reactions at the *** impedance spectra show that the battery with coated solid electrolyte presents a smaller interfacial resistance and maintains stability after a long cycling *** contrast,the baseline battery with a pure LAGP pellet shows a contact loss after cycling with the vibration of interfacial *** Li symmetric cells with indium-modified solid electrolyte present stable cycling behavior over 400 h at 0.1 and 0.2 mA·cm^(−2).The all-solid-state Li-metal batteries with a Li anode,indium coating LAGP and two kinds of cathodes,namely carbon nanotubes(CNTs)and LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811),are prepared and *** CNTs cathode for Li-O2 and Li-air batteries has a higher specific capacity than traditional Li-ion battery *** Li-NCM811 batteries deliver an initial Coulombic efficiency of about 75%,with 82%capacity retention after 20 cycles.
A high-performance quasi-solid polymer electrolyte for sodium metal batteries(SMBs)based on in-situ polymerized poly(1,3-dioxolane)(DOL)with 20%volume ratio of fluoroethylene carbonate(FEC),termed"PDFE-20",i...
详细信息
A high-performance quasi-solid polymer electrolyte for sodium metal batteries(SMBs)based on in-situ polymerized poly(1,3-dioxolane)(DOL)with 20%volume ratio of fluoroethylene carbonate(FEC),termed"PDFE-20",is proposed in this *** is demonstrated PDFE-20 possesses a room-temperature ionic conductivity of 3.31×10^(-3) S cm^(-1),an ionic diffusion activation energy of 0.10 eV,and an oxidation potential of 4.4 *** based on PDFE-20 and Na_(3)V_(2)(PO_(4))_(3)(NVP)cathodes were evaluated with an active material mass loading of 6.8 mg cm^(-2).The cell displayed an initial discharge specific capacity of 104 mA h g^(-1),and97.1%capacity retention after 100 cycles at 0.5 ***-situ polymerization conformally coats the anode/-cathode interfaces,avoiding geometrical gaps and high charge transfer resistance with ex-situ polymerization of the same *** acts as a plasticizer during polymerization to suppress crystallization and significantly improves ionic *** battery cycling FEC promotes mechanical congruence of electrolyte-electrode interfaces while forming a stable NaF-rich solid electrolyte interphase(SEI)at the *** functional theory(DFT)calculations were also performed to further understand the role FEC in the poly(DOL)-FEC *** work broadens the application of in-situ prepared poly(DOL)electrolytes to sodium storage and demonstrates the crucial role of FEC in improving the electrochemical performance.
暂无评论