咨询与建议

限定检索结果

文献类型

  • 478 篇 期刊文献
  • 329 篇 会议
  • 1 册 图书

馆藏范围

  • 808 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 504 篇 工学
    • 345 篇 计算机科学与技术...
    • 299 篇 软件工程
    • 116 篇 生物工程
    • 83 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 65 篇 生物医学工程(可授...
    • 55 篇 光学工程
    • 55 篇 电气工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 19 篇 机械工程
    • 17 篇 交通运输工程
    • 17 篇 网络空间安全
  • 375 篇 理学
    • 189 篇 数学
    • 125 篇 生物学
    • 115 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 52 篇 化学
    • 38 篇 系统科学
    • 17 篇 地球物理学
  • 117 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 35 篇 工商管理
  • 56 篇 医学
    • 46 篇 临床医学
    • 41 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
    • 22 篇 公共卫生与预防医...
  • 20 篇 法学
    • 18 篇 社会学
  • 16 篇 经济学
  • 14 篇 农学
  • 6 篇 教育学
  • 1 篇 文学

主题

  • 47 篇 machine learning
  • 43 篇 deep learning
  • 41 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 16 篇 reinforcement le...
  • 15 篇 support vector m...
  • 15 篇 medical services
  • 15 篇 decision making
  • 15 篇 artificial intel...
  • 15 篇 machine learning...
  • 14 篇 diseases
  • 13 篇 forecasting
  • 12 篇 image segmentati...
  • 11 篇 ethics
  • 10 篇 scalability

机构

  • 47 篇 center for machi...
  • 29 篇 ai for science i...
  • 28 篇 center for data ...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 18 篇 beijing internat...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 10 篇 australian insti...
  • 10 篇 department of ar...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 22 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 zhang linfeng
  • 11 篇 dong bin
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 713 篇 英文
  • 92 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
808 条 记 录,以下是211-220 订阅
排序:
Exploring Neural Network Landscapes: Star-Shaped and Geodesic Connectivity
arXiv
收藏 引用
arXiv 2024年
作者: Lin, Zhanran Li, Puheng Wu, Lei Department of Statistics and Data Science Wharton School University of Pennsylvania United States Department of Statistics Stanford University United States School of Mathematical Sciences Peking University China Center for Machine Learning Research Peking University China
One of the most intriguing findings in the structure of neural network landscape is the phenomenon of mode connectivity [FB17, DVSH18]: For two typical global minima, there exists a path connecting them without barrie... 详细信息
来源: 评论
Memory3: Language Modeling with Explicit Memory
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Hongkang Lin, Zehao Wang, Wenjin Wu, Hao Li, Zhiyu Tang, Bo Wei, Wenqiang Wang, Jinbo Tang, Zeyun Song, Shichao Xi, Chenyang Yu, Yu Chen, Kai Xiong, Feiyu Tang, Linpeng Weinan, E. Center for LLM Institute for Advanced Algorithms Research Shanghai China Moqi Inc China Center for Machine Learning Research Peking University China School of Mathematical Sciences Peking University AI for Science Institute China
The training and inference of large language models (LLMs) are together a costly process that transports knowledge from raw data to meaningful computation. Inspired by the memory hierarchy of the human brain, we reduc... 详细信息
来源: 评论
CASSPR: Cross Attention Single Scan Place Recognition
CASSPR: Cross Attention Single Scan Place Recognition
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Yan Xia Mariia Gladkova Rui Wang Qianyun Li Uwe Stilla João F. Henriques Daniel Cremers Technical University of Munich Munich Center for Machine Learning (MCML) Visual Geometry Group University of Oxford Munich Data Science Institute Microsoft Zurich
Place recognition based on point clouds (LiDAR) is an important component for autonomous robots or self-driving vehicles. Current SOTA performance is achieved on accumulated LiDAR submaps using either point-based or v...
来源: 评论
Improved Approach for Mapping Anthropological Facial Features Based on A Convolutional Neural Network  2nd
Improved Approach for Mapping Anthropological Facial Feature...
收藏 引用
2nd International Conference on Advances in Information and Communication Technology, ICTA 2023
作者: Huong, Nguyen Thu Long, Nguyen The Lien, Pham Thi Department of Informatics Institute of Cybersecurity and Digital Technologies MIREA – Russian Technological University Moscow119454 Russia Laboratory of Artificial Intelligence and Machine Learning Institute of Information Technology and Data Science Irkutsk National Research Technical University Irkutsk664074 Russia University of Information and Communication Technology Thai Nguyen University Thai Nguyen70000 Viet Nam
Our facial anthropological and actions are non-verbal communication tools that account for 93% of emotions in human communication, 55% of which are facial expressions and gestures. Facial emotions can be easily analyz... 详细信息
来源: 评论
DFingerNet: Noise-Adaptive Speech Enhancement for Hearing Aids
DFingerNet: Noise-Adaptive Speech Enhancement for Hearing Ai...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Tsangko, Iosif Triantafyllopoulos, Andreas Müller, Michael Schröter, Hendrik Schuller, Björn W. EIHW - Embedded Intelligence for Health Care and Wellbeing University of Augsburg Germany Technical University of Munich Germany MCML - Munich Center for Machine Learning Munich Germany WS Audiology Research and Development Erlangen Germany GLAM - Group on Language Audio & Music Imperial College London United Kingdom MDSI - Munich Data Science Institute Munich Germany
The DeepFilterNet (DFN) architecture was recently proposed as a deep learning model suited for hearing aid devices. Despite its competitive performance on numerous benchmarks, it still follows a 'one-size-fits-all... 详细信息
来源: 评论
Regularized Shannon sampling formulas related to the special affine Fourier transform
arXiv
收藏 引用
arXiv 2023年
作者: Filbir, Frank Tasche, Manfred Veselovska, Anna Institute of Mathematics University of Rostock Germany Department of Mathematics Munich Data Science Institute Technical University of Munich Munich Center for Machine Learning Garching/Munich Germany
In this paper, we present new regularized Shannon sampling formulas related to the special affine Fourier transform (SAFT). These sampling formulas use localized sampling with special compactly supported window functi... 详细信息
来源: 评论
HERALD: A NATURAL LANGUAGE ANNOTATED LEAN 4 dataSET
arXiv
收藏 引用
arXiv 2024年
作者: Gao, Guoxiong Wang, Yutong Jiang, Jiedong Gao, Qi Qin, Zihan Xu, Tianyi Dong, Bin Peking University China National University of Singapore Singapore Center for Data Science Peking University China Beijing International Center for Mathematical Research The New Cornerstone Science Laboratory Peking University China Center for Machine Learning Research Peking University China
Verifiable formal languages like Lean have profoundly impacted mathematical reasoning, particularly through the use of large language models (LLMs) for automated reasoning. A significant challenge in training LLMs for... 详细信息
来源: 评论
Predicting gastric cancer response to anti-HER2 therapy or anti-HER2 combined immunotherapy based on multimodal data
收藏 引用
Signal Transduction and Targeted Therapy 2024年 第9期9卷 4137-4148页
作者: Zifan Chen Yang Chen Yu Sun Lei Tang Li Zhang Yajie Hu Meng He Zhiwei Li Siyuan Cheng Jiajia Yuan Zhenghang Wang Yakun Wang Jie Zhao Jifang Gong Liying Zhao Baoshan Cao Guoxin Li Xiaotian Zhang Bin Dong Lin Shen Center for Data Science Peking UniversityBeijingChina Department of Gastrointestinal Oncology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina Department of Pathology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina Department of Radiology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina National Biomedical Imaging Center Peking UniversityBeijingChina Department of General Surgery Nanfang HospitalSouthern Medical UniversityGuangzhouChina Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor GuangzhouChina Department of Medical Oncology and Radiation Sickness Peking University Third HospitalBeijingChina National Engineering Laboratory for Big Data Analysis and Applications Peking UniversityBeijingChina Beijing International Center for Mathematical Research(BICMR) Peking UniversityBeijingChina Center for Machine Learning Research Peking UniversityBeijingChina
The sole use of single modality data often fails to capture the complex heterogeneity among patients,including the variability in resistance to anti-HER2 therapy and outcomes of combined treatment regimens,for the tre... 详细信息
来源: 评论
A causal intervention framework for synthesizing mobility data and evaluating predictive neural networks
arXiv
收藏 引用
arXiv 2023年
作者: Hong, Ye Xin, Yanan Dirmeier, Simon Perez-Cruz, Fernando Raubal, Martin Institute of Cartography and Geoinformation ETH Zurich Switzerland Swiss Data Science Center ETH Zurich Switzerland EPFL Switzerland Institute for Machine Learning Department of Computer Science ETH Zurich Switzerland
Deep neural networks are increasingly utilized in mobility prediction tasks, yet their intricate internal workings pose challenges for interpretability, especially in comprehending how various aspects of mobility beha... 详细信息
来源: 评论
Exploring molecular pretraining model at scale  24
Exploring molecular pretraining model at scale
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Xiaohong Ji Zhen Wang Zhifeng Gao Hang Zheng Linfeng Zhang Guolin Ke Weinan E DP Technology Beijing China DP Technology Beijing China and AI for Science Institute Beijing China AI for Science Institute Beijing China and School of Mathematical Sciences Peking University Beijing China and Center for Machine Learning Research Peking University Beijing China
In recent years, pretraining models have made significant advancements in the fields of natural language processing (NLP), computer vision (CV), and life sciences. The significant advancements in NLP and CV are predom...
来源: 评论