咨询与建议

限定检索结果

文献类型

  • 478 篇 期刊文献
  • 329 篇 会议
  • 1 册 图书

馆藏范围

  • 808 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 504 篇 工学
    • 345 篇 计算机科学与技术...
    • 299 篇 软件工程
    • 116 篇 生物工程
    • 83 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 65 篇 生物医学工程(可授...
    • 55 篇 光学工程
    • 55 篇 电气工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 19 篇 机械工程
    • 17 篇 交通运输工程
    • 17 篇 网络空间安全
  • 375 篇 理学
    • 189 篇 数学
    • 125 篇 生物学
    • 115 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 52 篇 化学
    • 38 篇 系统科学
    • 17 篇 地球物理学
  • 117 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 35 篇 工商管理
  • 56 篇 医学
    • 46 篇 临床医学
    • 41 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
    • 22 篇 公共卫生与预防医...
  • 20 篇 法学
    • 18 篇 社会学
  • 16 篇 经济学
  • 14 篇 农学
  • 6 篇 教育学
  • 1 篇 文学

主题

  • 47 篇 machine learning
  • 43 篇 deep learning
  • 41 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 16 篇 reinforcement le...
  • 15 篇 support vector m...
  • 15 篇 medical services
  • 15 篇 decision making
  • 15 篇 artificial intel...
  • 15 篇 machine learning...
  • 14 篇 diseases
  • 13 篇 forecasting
  • 12 篇 image segmentati...
  • 11 篇 ethics
  • 10 篇 scalability

机构

  • 47 篇 center for machi...
  • 29 篇 ai for science i...
  • 28 篇 center for data ...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 18 篇 beijing internat...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 10 篇 australian insti...
  • 10 篇 department of ar...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 22 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 zhang linfeng
  • 11 篇 dong bin
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 713 篇 英文
  • 92 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
808 条 记 录,以下是231-240 订阅
排序:
Segment Together: A Versatile Paradigm for Semi-Supervised Medical Image Segmentation
收藏 引用
IEEE Transactions on Medical Imaging 2025年 PP卷 PP页
作者: Zeng, Qingjie Xie, Yutong Lu, Zilin Lu, Mengkang Wu, Yicheng Xia, Yong Northwestern Polytechnical University National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology School of Computer Science and Engineering Xi’an710072 China The University of Adelaide Australian Institute for Machine Learning AdelaideSA5000 Australia Monash University Faculty of Information Technology Department of Data Science and AI Australia
The scarcity of annotations has become a significant obstacle in training powerful deep-learning models for medical image segmentation, limiting their clinical application. To overcome this, semi-supervised learning t... 详细信息
来源: 评论
Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Yenho Mudrik, Noga Johnsen, Kyle A. Alagapan, Sankaraleengam Charles, Adam S. Rozell, Christopher J. Machine Learning Center Georgia Institute of Technology United States School of Electrical and Computer Engineering Georgia Institute of Technology United States Coulter Dept. of Biomedical Engineering Emory University Georgia Institute of Technology United States Department of Biomedical Engineering Mathematical Institute for Data Science Center for Imaging Science Kavli Neuroscience Discovery Institute Johns Hopkins University United States
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals. For example, switching and decomposed models describe complex systems using laten... 详细信息
来源: 评论
Robust Autonomous Vehicle Pursuit without Expert Steering Labels
arXiv
收藏 引用
arXiv 2023年
作者: Pan, Jiaxin Zhou, Changyao Gladkova, Mariia Khan, Qadeer Cremers, Daniel The Technical University of Munich TUM Germany Munich Center for Machine Learning MCML Germany The University of Oxford United Kingdom The Munich Data Science Institute Germany
In this work, we present a learning method for both lateral and longitudinal motion control of an ego-vehicle for the task of vehicle pursuit. The car being controlled does not have a pre-defined route, rather it reac... 详细信息
来源: 评论
How robust is randomized blind deconvolution via nuclear norm minimization against adversarial noise?
arXiv
收藏 引用
arXiv 2023年
作者: Kostin, Julia Krahmer, Felix Stöger, Dominik Technical University of Munich Department of Mathematics Germany Munich Center for Machine Learning Germany Technical University of Munich Munich Data Science Institute Germany Germany
In this paper, we study the problem of recovering two unknown signals from their convolution, which is commonly referred to as blind deconvolution. Reformulation of blind deconvolution as a low-rank recovery problem h... 详细信息
来源: 评论
Ethical and methodological challenges in building morally informed AI systems
收藏 引用
AI and Ethics 2022年 第2期3卷 553-566页
作者: Hagendorff, Thilo Danks, David Cluster of Excellence “Machine Learning: New Perspectives for Science” University of Tuebingen Tuebingen Germany Halicioğlu Data Science Institute University of California San Diego USA
Recent progress in large language models has led to applications that can (at least) simulate possession of full moral agency due to their capacity to report context-sensitive moral assessments in open-domain conversa...
来源: 评论
A Two-Stage Minimum Cost Multicut Approach to Self-supervised Multiple Person Tracking  15th
A Two-Stage Minimum Cost Multicut Approach to Self-supervise...
收藏 引用
15th Asian Conference on Computer Vision, ACCV 2020
作者: Ho, Kalun Kardoost, Amirhossein Pfreundt, Franz-Josef Keuper, Janis Keuper, Margret Fraunhofer Center Machine Learning Sankt Augustin Germany CC-HPC Fraunhofer ITWM Kaiserslautern Germany Data and Web Science Group University of Mannheim Mannheim Germany Institute for Machine Learning and Analytics Offenburg University Offenburg Germany
Multiple Object Tracking (MOT) is a long-standing task in computer vision. Current approaches based on the tracking by detection paradigm either require some sort of domain knowledge or supervision to associate data c... 详细信息
来源: 评论
Uncertainty mapping and probabilistic tractography using Simulation-based Inference in diffusion MRI: A comparison with classical Bayes
收藏 引用
Medical Image Analysis 2025年 103卷 103580页
作者: Manzano-Patrón, J.P. Deistler, Michael Schröder, Cornelius Kypraios, Theodore Gonçalves, Pedro J. Macke, Jakob H. Sotiropoulos, Stamatios N. Sir Peter Mansfield Imaging Centre School of Medicine University of Nottingham United Kingdom Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen & Tübingen AI Center Germany School of Mathematical Sciences University of Nottingham United Kingdom Belgium Department of Computer Science and Department of Electrical Engineering KU Leuven Belgium Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Simulation-Based Inference (SBI) has recently emerged as a powerful framework for Bayesian inference: Neural networks are trained on simulations from a forward model, and learn to rapidly estimate posterior distributi... 详细信息
来源: 评论
Optimal bounds for ℓp sensitivity sampling via ℓ2 augmentation  24
Optimal bounds for ℓp sensitivity sampling via ℓ2 augmenta...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Alexander Munteanu Simon Omlor Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics TU Dortmund University Dortmund Germany and Lamarr-Institute for Machine Learning and Artificial Intelligence Dortmund Germany
data subsampling is one of the most natural methods to approximate a massively large data set by a small representative proxy. In particular, sensitivity sampling received a lot of attention, which samples points prop...
来源: 评论
On the Effectiveness of Heterogeneous Ensemble Methods for Re-Identification
On the Effectiveness of Heterogeneous Ensemble Methods for R...
收藏 引用
International Conference on machine learning and Applications (ICMLA)
作者: Simon Klüttermann Jérôme Rutinowski Frederik Polachowski Anh Nguyen Britta Grimme Moritz Roidl Emmanuel Müller TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany Paderborn University Paderborn Germany Research Center Trustworthy Data Science and Security Dortmund Germany
In this contribution, we introduce a novel ensemble method for the re-identification of industrial entities, using images of chipwood pallets and galvanized metal plates as dataset examples. Our algorithms replace com... 详细信息
来源: 评论
The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Jinbo Wang, Mingze Zhou, Zhanpeng Yan, Junchi Weinan, E. Wu, Lei School of Mathematical Sciences Peking University China Center for Machine Learning Research Peking University China Sch. of Computer Science Sch. of Artificial Intelligence Shanghai Jiao Tong University China AI for Science Institute Beijing China
Transformers consist of diverse building blocks, such as embedding layers, normalization layers, self-attention mechanisms, and point-wise feedforward networks. Thus, understanding the differences and interactions amo... 详细信息
来源: 评论