咨询与建议

限定检索结果

文献类型

  • 478 篇 期刊文献
  • 329 篇 会议
  • 1 册 图书

馆藏范围

  • 808 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 504 篇 工学
    • 345 篇 计算机科学与技术...
    • 299 篇 软件工程
    • 116 篇 生物工程
    • 83 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 65 篇 生物医学工程(可授...
    • 55 篇 光学工程
    • 55 篇 电气工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 19 篇 机械工程
    • 17 篇 交通运输工程
    • 17 篇 网络空间安全
  • 375 篇 理学
    • 189 篇 数学
    • 125 篇 生物学
    • 115 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 52 篇 化学
    • 38 篇 系统科学
    • 17 篇 地球物理学
  • 117 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 35 篇 工商管理
  • 56 篇 医学
    • 46 篇 临床医学
    • 41 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
    • 22 篇 公共卫生与预防医...
  • 20 篇 法学
    • 18 篇 社会学
  • 16 篇 经济学
  • 14 篇 农学
  • 6 篇 教育学
  • 1 篇 文学

主题

  • 47 篇 machine learning
  • 43 篇 deep learning
  • 41 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 16 篇 reinforcement le...
  • 15 篇 support vector m...
  • 15 篇 medical services
  • 15 篇 decision making
  • 15 篇 artificial intel...
  • 15 篇 machine learning...
  • 14 篇 diseases
  • 13 篇 forecasting
  • 12 篇 image segmentati...
  • 11 篇 ethics
  • 10 篇 scalability

机构

  • 47 篇 center for machi...
  • 29 篇 ai for science i...
  • 28 篇 center for data ...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 18 篇 beijing internat...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 10 篇 australian insti...
  • 10 篇 department of ar...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 22 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 zhang linfeng
  • 11 篇 dong bin
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 713 篇 英文
  • 92 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
808 条 记 录,以下是251-260 订阅
排序:
DISCO: Internal Evaluation of Density-Based Clustering
arXiv
收藏 引用
arXiv 2025年
作者: Beer, Anna Krieger, Lena Weber, Pascal Ritzert, Martin Assent, Ira Plant, Claudia Faculty of Computer Science University of Vienna Vienna Austria IAS-8: Data Analytics and Machine Learning Forschungszentrum Jülich Jülich Germany UniVie Doctoral School Computer Science University of Vienna Vienna Austria Data Science @ Uni Vienna University of Vienna Vienna Austria Institute of Computer Science and Campus Institute Data Science University of Göttingen Göttingen Germany Department of Computer Science Aarhus University Aarhus Denmark
In density-based clustering, clusters are areas of high object density separated by lower object density areas. This notion supports arbitrarily shaped clusters and automatic detection of noise points that do not belo... 详细信息
来源: 评论
Gradient is All You Need?
arXiv
收藏 引用
arXiv 2023年
作者: Riedl, Konstantin Klock, Timo Geldhauser, Carina Fornasier, Massimo Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Deeptech Consulting Oslo Norway Munich Data Science Institute Munich Germany
In this paper we provide a novel analytical perspective on the theoretical understanding of gradient-based learning algorithms by interpreting consensus-based optimization (CBO), a recently proposed multi-particle der... 详细信息
来源: 评论
Decoupling Common and Unique Representations for Multimodal Self-supervised learning
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Yi Albrecht, Conrad M. Braham, Nassim Ait Ali Liu, Chenying Xiong, Zhitong Zhu, Xiao Xiang Data Science in Earth Observation Technical University of Munich Germany Remote Sensing Technology Institute German Aerospace Center Germany Munich Center for Machine Learning Germany
The increasing availability of multi-sensor data sparks wide interest in multimodal self-supervised learning. However, most existing approaches learn only common representations across modalities while ignoring intra-... 详细信息
来源: 评论
Personalised Speech-Based PTSD Prediction Using Weighted-Instance learning  46
Personalised Speech-Based PTSD Prediction Using Weighted-Ins...
收藏 引用
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
作者: Kathan, Alexander Amiriparian, Shahin Triantafyllopoulos, Andreas Gebhard, Alexander Milkus, Sabrina Hohmann, Jonas Muderlak, Pauline Schottdorf, Jürgen Musil, Richard Schuller, Björn W. University of Augsburg Eihw - Embedded Intelligence for Healthcare and Wellbeing Germany Mri Technical Univsersity of Munich Chi - Health Informatics Germany Mcml - Munich Center for Machine Learning Germany University Hospital Lmu Munich Department of Psychiatry and Psychotherapy Germany Zentrumspraxis Friedberg Germany Imperial College London Glam - Group on Language Audio & Music United Kingdom Mdsi - Munich Data Science Institute Germany
Post-traumatic stress disorder (PTSD) is a prevalent disorder that can develop in people who have experienced very stressful, shocking, or distressing events. It has great influence on peoples' daily life and can ... 详细信息
来源: 评论
TOWARDS DIVERSE EVALUATION OF CLASS INCREMENTAL learning: A REPRESENTATION learning PERSPECTIVE  3
TOWARDS DIVERSE EVALUATION OF CLASS INCREMENTAL LEARNING: A ...
收藏 引用
3rd Conference on Lifelong learning Agents, CoLLAs 2024
作者: Cha, Sungmin Kwak, Jihwan Shim, Dongsub Kim, Hyunwoo Lee, Moontae Lee, Honglak Moon, Taesup Computer Science Department Courant Institute of Mathematical Sciences New York University United States Department of Electrical and Computer Engineering Seoul National University Korea Republic of Advanced Machine Learning Lab LG AI Research Korea Republic of Zhejiang Lab China Department of Information and Decision Sciences University of Illinois Chicago United States ASRI INMC IPAI AIIS Seoul National University Korea Republic of
Class incremental learning (CIL) algorithms aim to continually learn new object classes from incrementally arriving data while not forgetting past learned classes. The common evaluation protocol for CIL algorithms is ... 详细信息
来源: 评论
CBAM-SAUNet: A novel attention U-Net for effective segmentation of corner cases  46
CBAM-SAUNet: A novel attention U-Net for effective segmentat...
收藏 引用
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
作者: Rajamani, Srividya Tirunellai Rajamani, Kumar Angeline, J. Karthika, R. Schuller, Björn W. Embedded Intelligence for Health Care & Wellbeing University of Augsburg Germany Department of Artificial Intelligence Marwadi University Gujarat Rajkot India Department of Electronics and Communication Engineering Amrita School of Engineering Amrita Vishwa Vidyapeetham Coimbatore India Germany Munich Data Science Institute Germany Munich Center for Machine Learning GLAM-the Group on Language Audio & Music Imperial College London London United Kingdom
U-Net has been demonstrated to be effective for the task of medical image segmentation. Additionally, integrating attention mechanism into U-Net has been shown to yield significant benefits. The Shape Attentive U-Net ... 详细信息
来源: 评论
Model and Feature Diversity for Bayesian Neural Networks in Mutual learning
arXiv
收藏 引用
arXiv 2024年
作者: Pham, Cuong Nguyen, Cuong C. Le, Trung Phung, Dinh Carneiro, Gustavo Do, Thanh-Toan Department of Data Science and AI Monash University Australia Australian Institute for Machine Learning University of Adelaide Australia Centre for Vision Speech and Signal Processing University of Surrey United Kingdom VinAI Viet Nam
Bayesian Neural Networks (BNNs) offer probability distributions for model parameters, enabling uncertainty quantification in predictions. However, they often underperform compared to deterministic neural networks. Uti... 详细信息
来源: 评论
Less is More: Facial Landmarks can Recognize a Spontaneous Smile  33
Less is More: Facial Landmarks can Recognize a Spontaneous S...
收藏 引用
33rd British machine Vision Conference Proceedings, BMVC 2022
作者: Tushar, Md Tahrim Faroque Yang, Yan Hossain, Md Zakir Naim, Sheikh Motahar Mohammed, Nabeel Rahman, Shafin Department of Electrical and Computer Engineering North South University Bangladesh Biological Data Science Institute The Australian National University Canberra Australia CSIRO Agriculture and Food Canberra Australia CSIRO Machine Learning and Artificial Intelligence Future Science Platform Canberra Australia Amazon Web Services
Smile veracity classification is a task of interpreting social interactions. Broadly, it distinguishes between spontaneous and posed smiles. Previous approaches used hand-engineered features from facial landmarks or c... 详细信息
来源: 评论
Uni-ELF: A Multi-Level Representation learning Framework for Electrolyte Formulation Design
arXiv
收藏 引用
arXiv 2024年
作者: Zeng, Boshen Chen, Sian Liu, Xinxin Chen, Changhong Deng, Bin Wang, Xiaoxu Gao, Zhifeng Zhang, Yuzhi Weinan, E. Zhang, Linfeng DP Technology Beijing100080 China Peking University Beijing100871 China AI for Science Institute Beijing100080 China Center for Machine Learning Research School of Mathematical Sciences Peking University Beijing China
Advancements in lithium battery technology heavily rely on the design and engineering of electrolytes. However, current schemes for molecular design and recipe optimization of electrolytes lack an effective computatio... 详细信息
来源: 评论
U-Star: AN Asymmetric U-Shaped Network Based on Element-Wise Multiplication to Segment Nuclei in H&E Stained Histological Images
U-Star: AN Asymmetric U-Shaped Network Based on Element-Wise...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Guangzhengao Yang Li Zhang Jie Zhao Zifan Chen Haoshen Li Bin Dong Center for Data Science Peking University China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China National Biomedical Imaging Center Peking University China
Nuclei segmentation in Hematoxylin and Eosin (H&E) stained images plays a crucial role in cancer diagnosis and pathological evaluation, enabling pathologists to identify abnormal cells and assess their morphology ... 详细信息
来源: 评论