咨询与建议

限定检索结果

文献类型

  • 475 篇 期刊文献
  • 329 篇 会议
  • 1 册 图书

馆藏范围

  • 805 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 502 篇 工学
    • 344 篇 计算机科学与技术...
    • 298 篇 软件工程
    • 116 篇 生物工程
    • 82 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 65 篇 生物医学工程(可授...
    • 55 篇 光学工程
    • 55 篇 电气工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 373 篇 理学
    • 187 篇 数学
    • 125 篇 生物学
    • 115 篇 物理学
    • 83 篇 统计学(可授理学、...
    • 52 篇 化学
    • 38 篇 系统科学
    • 17 篇 地球物理学
  • 116 篇 管理学
    • 65 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 35 篇 工商管理
  • 55 篇 医学
    • 46 篇 临床医学
    • 41 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
    • 22 篇 公共卫生与预防医...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 6 篇 教育学
  • 1 篇 文学

主题

  • 47 篇 machine learning
  • 43 篇 deep learning
  • 41 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 16 篇 reinforcement le...
  • 15 篇 support vector m...
  • 15 篇 medical services
  • 15 篇 decision making
  • 15 篇 artificial intel...
  • 15 篇 machine learning...
  • 14 篇 diseases
  • 13 篇 forecasting
  • 12 篇 image segmentati...
  • 11 篇 ethics
  • 10 篇 scalability

机构

  • 47 篇 center for machi...
  • 29 篇 ai for science i...
  • 28 篇 center for data ...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 18 篇 beijing internat...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 10 篇 australian insti...
  • 10 篇 department of ar...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 22 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 zhang linfeng
  • 11 篇 dong bin
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 710 篇 英文
  • 92 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
805 条 记 录,以下是281-290 订阅
排序:
Open Eyes, Then Reason: Fine-grained Visual mathematical Understanding in MLLMs
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Shan Chen, Aotian Sun, Yanpeng Gu, Jindong Zheng, Yi-Yu Koniusz, Piotr Zou, Kai van den Hengel, Anton Xue, Yuan Australian Institute for Machine Learning University of Adelaide Australia Georgia Institute of Technology United States Nanjing University of Science and Technology China University of Oxford United Kingdom NetMind.ai Data61 CSIRO The Ohio State University United States
Current multimodal large language models (MLLMs) often underperform on mathematical problem-solving tasks that require fine-grained visual understanding. The limitation is largely attributable to inadequate perception... 详细信息
来源: 评论
learning STOCHASTIC DYNAMICS FROM SNAPSHOTS THROUGH REGULARIZED UNBALANCED OPTIMAL TRANSPORT
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Zhenyi Li, Tiejun Zhou, Peijie LMAM and School of Mathematical Sciences Peking University China Center for Machine Learning Research Peking University China NELBDA Peking University China Center for Quantitative Biology Peking University China AI for Science Institute Beijing China
Reconstructing dynamics using samples from sparsely time-resolved snapshots is an important problem in both natural sciences and machine learning. Here, we introduce a new deep learning approach for solving regularize... 详细信息
来源: 评论
PASS: Peer-Agreement based Sample Selection for Training with Noisy Labels
arXiv
收藏 引用
arXiv 2023年
作者: Garg, Arpit Nguyen, Cuong Felix, Rafael Do, Thanh-Toan Carneiro, Gustavo Australian Institute for Machine Learning University of Adelaide Australia Centre for Vision Speech and Signal Processing University of Surrey United Kingdom Department of Data Science and AI Monash University Australia
The prevalence of noisy-label samples poses a significant challenge in deep learning, inducing overfitting effects. This has, therefore, motivated the emergence of learning with noisy-label (LNL) techniques that focus... 详细信息
来源: 评论
Advancing OCT-Based Retinal Disease Classification with XLSTM: A Framework for Variable-Length Volume Processing
Advancing OCT-Based Retinal Disease Classification with XLST...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Emese Sükei Marzieh Oghbaie Ursula Schmidt-Erfurth Günter Klambauer Hrvoje Bogunović Department of Ophthalmology OPTIMA Lab Medical University of Vienna Austria Institute of Artificial Intelligence Medical University of Vienna Center for Medical Data Science Austria LIT AI Lab Institute for Machine Learning Johannes Kepler University Austria NXAI GmbH Linz Austria
This paper presents a method for retinal disease classification using optical coherence tomography (OCT) scans, specifically addressing the challenge of variable B-scan density across dataset volumes. Deep learning me... 详细信息
来源: 评论
Instance-dependent Noisy-label learning with Graphical Model Based Noise-rate Estimation
arXiv
收藏 引用
arXiv 2023年
作者: Garg, Arpit Nguyen, Cuong Felix, Rafael Do, Thanh-Toan Carneiro, Gustavo Australian Institute for Machine Learning University of Adelaide Australia Department of Data Science and AI Monash University Australia Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
Deep learning faces a formidable challenge when handling noisy labels, as models tend to overfit samples affected by label noise. This challenge is further compounded by the presence of instance-dependent noise (IDN),...
来源: 评论
Nonparametric inference of higher order interaction patterns in networks
arXiv
收藏 引用
arXiv 2024年
作者: Wegner, Anatol E. Olhede, Sofia C. Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science University of Würzburg Würzburg97070 Germany Institute of Mathematics École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland
We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs. The method is based on a class of analytically solvable generative ... 详细信息
来源: 评论
Diversity Seeking Techniques for Red-Teaming Large Language Models
Diversity Seeking Techniques for Red-Teaming Large Language ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Seokhan Lee Bonhwa Ku Hanseok Ko Dept. Computer Science and Engineering Korea University Seoul Republic of Korea Machine Learning Big Data Institute Korea University Seoul Republic of Korea Dept. Electrical and Computer Engineering Korea University Seoul Republic of Korea
In this paper, we present new techniques for increasing the diversity of red-teaming prompts generated by automated machine learning-based methods, thereby enabling the discovery of more vulnerabilities in large langu... 详细信息
来源: 评论
Identifying General Mechanism Shifts in Linear Causal Representations
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Tianyu Bello, Kevin Locatello, Francesco Aragam, Bryon Ravikumar, Pradeep Department of Statistics and Data Sciences University of Texas Austin United States Booth School of Business University of Chicago United States Machine Learning Department Carnegie Mellon University United States Institute of Science and Technology Austria
We consider the linear causal representation learning setting where we observe a linear mixing of d unknown latent factors, which follow a linear structural causal model. Recent work has shown that it is possible to r...
来源: 评论
On convergence of federated averaging langevin dynamics  24
On convergence of federated averaging langevin dynamics
收藏 引用
Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence
作者: Wei Deng Qian Zhang Yi-An Ma Zhao Song Guang Lin Machine Learning Research Morgan Stanley Department of Statistics Purdue University West Lafayette Halicioglu Data Science Institute University of California San Diego Adobe Research Department of Mathematics and School of Mechanical Engineering Purdue University
We propose a federated averaging Langevin algorithm (FA-LD) for uncertainty quantification and mean predictions with distributed clients. In particular, we generalize beyond normal posterior distributions and consider...
来源: 评论
Model and feature diversity for bayesian neural networks in mutual learning  23
Model and feature diversity for bayesian neural networks in ...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Cuong Pham Cuong C. Nguyen Trung Le Dinh Phung Gustavo Carneiro Thanh-Toan Do Department of Data Science and AI Monash University Australia Australian Institute for Machine Learning University of Adelaide Australia Department of Data Science and AI Monash University Australia and VinAI Vietnam Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
Bayesian Neural Networks (BNNs) offer probability distributions for model parameters, enabling uncertainty quantification in predictions. However, they often underperform compared to deterministic neural networks. Uti...
来源: 评论