咨询与建议

限定检索结果

文献类型

  • 480 篇 期刊文献
  • 338 篇 会议
  • 1 册 图书

馆藏范围

  • 819 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 349 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 122 篇 生物工程
    • 83 篇 信息与通信工程
    • 71 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 57 篇 电气工程
    • 55 篇 光学工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 386 篇 理学
    • 192 篇 数学
    • 127 篇 生物学
    • 121 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 58 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 118 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 64 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 8 篇 教育学
  • 1 篇 文学

主题

  • 48 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 image segmentati...
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 658 篇 英文
  • 158 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
819 条 记 录,以下是431-440 订阅
排序:
Exploiting Field Dependencies for learning on Categorical data
arXiv
收藏 引用
arXiv 2023年
作者: Li, Zhibin Koniusz, Piotr Zhang, Lu Pagendam, Daniel Edward Moghadam, Peyman Machine Learning & Artificial Intelligence Future Science Platform CSIRO Brisbane Australia Data61 CSIRO Australia The Australian National University Canberra Australia The Queensland University of Technology Brisbane Australia The Queensland Brain Institute University of Queensland Brisbane Australia
Traditional approaches for learning on categorical data underexploit the dependencies between columns (a.k.a. fields) in a dataset because they rely on the embedding of data points driven alone by the classification/r... 详细信息
来源: 评论
An automatic analysis of ultrasound vocalisations for the prediction of interaction context in captive Egyptian fruit bats
arXiv
收藏 引用
arXiv 2024年
作者: Triantafyllopoulos, Andreas Gebhard, Alexander Milling, Manuel Rampp, Simon Schuller, Björn Technical University of Munich MRI Munich Germany EIHW - Embedded Intelligence for Health Care and Wellbeing Augsburg Germany MCML - Munich Center for Machine Learning Munich Germany MDSI - Munich Data Science Institute Munich Germany GLAM - Group on Language Audio & Music Imperial College London United Kingdom
Prior work in computational bioacoustics has mostly focused on the detection of animal presence in a particular habitat. However, animal sounds contain much richer information than mere presence;among others, they enc... 详细信息
来源: 评论
Comparing Sequential Forecasters
arXiv
收藏 引用
arXiv 2021年
作者: Choe, Yo Joong Ramdas, Aaditya Data Science Institute University of Chicago United States Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States
Consider two forecasters, each making a single prediction for a sequence of events over time. We ask a relatively basic question: how might we compare these forecasters, either online or post-hoc, while avoiding unver... 详细信息
来源: 评论
An iterative-based difference scheme for nonlinear fractional integro-differential equations of Volterra type
收藏 引用
Partial Differential Equations in Applied Mathematics 2025年 13卷
作者: Saini, Gaurav Ghosh, Bappa Chand, Sunita Mohapatra, Jugal Center for Data Science Department of Computer Science and Engineering Siksha ‘O’ Anusandhan (Deemed to be University) India Center for Artificial Intelligence and Machine Learning Department of Computer Science and Engineering Siksha ‘O’ Anusandhan (Deemed to be University) India Department of Mathematics Siksha ‘O’ Anusandhan (Deemed to be University) India Department of Mathematics National Institute of Technology Rourkela India
This paper presents an iterative difference scheme for solving nonlinear fractional integro-differential equations of Volterra type, which are widely used in modeling memory-dependent phenomena in various scientific a... 详细信息
来源: 评论
Big data in Social Media: Analyzing Trends, Patterns and Challenges  2
Big Data in Social Media: Analyzing Trends, Patterns and Cha...
收藏 引用
2nd International Conference on machine learning and Autonomous Systems, ICMLAS 2025
作者: Jikar, Nayan Tale, Yash Tale, Abhay Barhate, Aditya Verma, Prateek Jikar, Aman Datta Meghe Institute of Higher Education and Research Sawangi Faculty of Engineering and Technology Department of Artificial Intelligence and Machine Learning Maharashtra Wardha442001 India Datta Meghe Institute of Higher Education and Research Sawangi Faculty of Engineering and Technology Department of Artificial Intelligence and Data Science Maharashtra Wardha442001 India Datta Meghe Institute of Higher Education and Research Faculty of Engineering and Technology Department of Computer Science and Engineering Maharashtra Wardha442001 India
The huge volumes of data produced in social media provide both new possibilities and challenges to analytics. The present paper emphasizes Big data analytics and machine learning (ML) methods to uncover trends, patter... 详细信息
来源: 评论
Thermal disorder and phonon softening in the ferroelectric phase transition of lead titanate
arXiv
收藏 引用
arXiv 2024年
作者: Xie, Pinchen Chen, Yixiao Weinan, E. Car, Roberto Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States AI for Science Institute Beijing China Center for Machine Learning Research School of Mathematical Sciences Peking University Beijing China Department of Chemistry Department of Physics Program in Applied and Computational Mathematics Princeton Materials Institute Princeton University PrincetonNJ08544 United States
We report an extensive molecular dynamics study of ab-initio quality of the ferroelectric phase transition in crystalline PbTiO3. We model anharmonicity accurately in terms of potential energy and polarization surface... 详细信息
来源: 评论
Probabilistic task modelling for meta-learning
arXiv
收藏 引用
arXiv 2021年
作者: Nguyen, Cuong Do, Thanh-Toan Carneiro, Gustavo Australian Institute for Machine Learning University of Adelaide Australia Department of Data Science and AI Monash University Australia
We propose probabilistic task modelling - a generative probabilistic model for collections of tasks used in meta-learning. The proposed model combines variational auto-encoding and latent Dirichlet allocation to model... 详细信息
来源: 评论
machine learning-Based Security for Cloud Computing Challenges and Implications
Machine Learning-Based Security for Cloud Computing Challeng...
收藏 引用
North Karnataka Subsection Flagship International Conference (NKCon), IEEE
作者: Rahul Dattangire Rushikesh Burle Divya Biradar Leelkanth Dewangan Independent Researcher Data Engineering Houston Texas USA Artificial Intelligence and Machine Learning Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Wardha Maharashtra India Computer Science University of Texas at Arlington Arlington Texas USA G H Raisoni College of Engineering Nagpur Maharashtra India
Cloud computing" is a computer model that provides end users with quantifiable, scalable, and on-demand services. These days, almost every organization uses computer technology extensively for infrastructure, cos... 详细信息
来源: 评论
The Implicit Bias of Batch Normalization in Linear Models and Two-layer Linear Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Cao, Yuan Zou, Difan Li, Yuanzhi Gu, Quanquan Department of Statistics and Actuarial Science Department of Mathematics The University of Hong Kong Hong Kong Department of Computer Science Institute of Data Science The University of Hong Kong Hong Kong Machine Learning Department Carnegie Mellon University PittsburghPA United States Department of Computer Science University of California Los AngelesCA United States
We study the implicit bias of batch normalization trained by gradient descent. We show that when learning a linear model with batch normalization for binary classification, gradient descent converges to a uniform marg... 详细信息
来源: 评论
The Benefits of Mixup for Feature learning
arXiv
收藏 引用
arXiv 2023年
作者: Zou, Difan Cao, Yuan Li, Yuanzhi Gu, Quanquan Department of Computer Science Institute of Data Science The University of Hong Kong Hong Kong Department of Statistics and Actuarial Science Department of Mathematics The University of Hong Kong Hong Kong Machine Learning Department Carnegie Mellon University PittsburghPA United States Department of Computer Science University of California Los AngelesCA United States
Mixup, a simple data augmentation method that randomly mixes two data points via linear interpolation, has been extensively applied in various deep learning applications to gain better generalization. However, the the... 详细信息
来源: 评论