咨询与建议

限定检索结果

文献类型

  • 480 篇 期刊文献
  • 338 篇 会议
  • 1 册 图书

馆藏范围

  • 819 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 349 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 122 篇 生物工程
    • 83 篇 信息与通信工程
    • 71 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 57 篇 电气工程
    • 55 篇 光学工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 386 篇 理学
    • 192 篇 数学
    • 127 篇 生物学
    • 121 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 58 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 118 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 64 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 8 篇 教育学
  • 1 篇 文学

主题

  • 48 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 image segmentati...
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 658 篇 英文
  • 158 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
819 条 记 录,以下是511-520 订阅
排序:
Unsupervised Domain-Adaptive Semantic Segmentation for Surgical Instruments Leveraging Dropout-Enhanced Dual Heads and Coarse-Grained Classification Branch
IEEE Transactions on Medical Robotics and Bionics
收藏 引用
IEEE Transactions on Medical Robotics and Bionics 2025年
作者: Li, Ziqian Wang, Zhengyu Xu, Xinzhou Chen, Yongfa Schuller, Bjorn W. Hefei University of Technology School of Mechanical Engineering Hefei China Nanjing University of Posts and Telecommunications School of Internet of Things Nanjing China Graz University of Technology Signal Processing and Speech Communication Laboratory Graz Austria Chair of Health Informatics Munich Germany Munich Data Science Institute Munich Germany Munich Center for Machine Learning Munich Germany Imperial College London GLAM – the Group on Language Audio and Music London United Kingdom
Accurate semantic segmentation for surgical instruments is crucial in robot-assisted minimally invasive surgery, mainly regarded as a core module in surgical-instrument tracking and operation guidance. Nevertheless, i... 详细信息
来源: 评论
Kernel based quantum machine learning at record rate: Many-body distribution functionals as compact representations
arXiv
收藏 引用
arXiv 2023年
作者: Khan, Danish Heinen, Stefan von Lilienfeld, O. Anatole Department of Chemistry University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
The feature vector mapping used to represent chemical systems is a key factor governing the superior data-efficiency of kernel based quantum machine learning (QML) models applicable throughout chemical compound space.... 详细信息
来源: 评论
XAI for Transformers: Better Explanations through Conservative Propagation
arXiv
收藏 引用
arXiv 2022年
作者: Ali, Ameen Ali Schnake, Thomas Eberle, Oliver Montavon, Grégoire Müller, Klaus-Robert Wolf, Lior The School of Computer Science Tel-Aviv University Israel Machine Learning Group Technische Universität Berlin Berlin Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max Planck Institute for Informatics Saarbrücken Germany
Transformers have become an important workhorse of machine learning, with numerous applications. This necessitates the development of reliable methods for increasing their transparency. Multiple interpretability metho... 详细信息
来源: 评论
OADAT: Experimental and Synthetic Clinical Optoacoustic data for Standardized Image Processing
arXiv
收藏 引用
arXiv 2022年
作者: Ozdemir, Firat Lafci, Berkan Deán-Ben, Xosé Luís Razansky, Daniel Perez-Cruz, Fernando Swiss Data Science Center ETH Zurich and EPFL Zurich Switzerland Institute of Pharmacology and Toxicology Institute for Biomedical Engineering Faculty of Medicine University of Zurich Switzerland Institute for Biomedical Engineering Department of Information Technology and Electrical Engineering ETH Zurich Switzerland Institute for Machine Learning Department of Computer Science ETH Zurich Switzerland
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by subsequent detection of ultrasound waves generated via light-absorption-mediated thermoelastic e... 详细信息
来源: 评论
Reactive Exploration to Cope with Non-Stationarity in Lifelong Reinforcement learning
arXiv
收藏 引用
arXiv 2022年
作者: Steinparz, Christian Schmied, Thomas Paischer, Fabian Dinu, Marius-Constantin Patil, Vihang Bitto-Nemling, Angela Eghbal-Zadeh, Hamid Hochreiter, Sepp ELLIS Unit Linz and LIT AI Lab Institute for Machine Learning Johannes Kepler University Linz Austria Visual Data Science Lab Institute of Compute Graphics Johannes Kepler University Linz Austria Dynatrace Research Linz Austria Vienna Austria
In lifelong learning, an agent learns throughout its entire life without resets, in a constantly changing environment, as we humans do. Consequently, lifelong learning comes with a plethora of research problems such a... 详细信息
来源: 评论
Heat flux for semilocal machine-learning potentials
收藏 引用
Physical Review B 2023年 第10期108卷 L100302-L100302页
作者: Marcel F. Langer Florian Knoop Christian Carbogno Matthias Scheffler Matthias Rupp Machine Learning Group Technische Universität Berlin 10587 Berlin Germany Berlin Institute for the Foundations of Learning and Data 10623 Berlin Germany The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS Adlershof of the Humboldt Universität zu Berlin 14195 Berlin Germany Theoretical Physics Division Department of Physics Chemistry and Biology (IFM) Linköping University 581 83 Linköping Sweden Department of Computer and Information Science University of Konstanz 78464 Konstanz Germany Materials Research and Technology Department Luxembourg Institute of Science and Technology Belvaux Luxembourg
The Green-Kubo (GK) method is a rigorous framework for heat transport simulations in materials. However, it requires an accurate description of the potential-energy surface and carefully converged statistics. machine-... 详细信息
来源: 评论
learning Trivializing Gradient Flows for Lattice Gauge Theories
arXiv
收藏 引用
arXiv 2022年
作者: Bacchio, Simone Kessel, Pan Schaefer, Stefan Vaitl, Lorenz Computation-based Science and Technology Research Center The Cyprus Institute Nicosia Cyprus Machine Learning Group Technische Universität Berlin Berlin Germany BIFOLD—Berlin Institute for the Foundations of Learning and Data Berlin Germany John Von Neumann-Institut für Computing NIC Deutsches Elektronen-Synchrotron DESY Germany
We propose a unifying approach that starts from the perturbative construction of trivializing maps by Lüscher and then improves on it by learning. The resulting continuous normalizing flow model can be implemente... 详细信息
来源: 评论
DFingerNet: Noise-Adaptive Speech Enhancement for Hearing Aids
arXiv
收藏 引用
arXiv 2025年
作者: Tsangko, Iosif Triantafyllopoulos, Andreas Müller, Michael Schröter, Hendrik Schuller, Björn W. EIHW – Chair of Embedded Intelligence for Health Care and Wellbeing University of Augsburg Germany CHI – Chair of Health Informatics Technical University of Munich Germany MCML – Munich Center for Machine Learning Munich Germany WS Audiology Research and Development Erlangen Germany GLAM – Group on Language Audio & Music Imperial College London United Kingdom MDSI – Munich Data Science Institute Munich Germany
The DeepFilterNet (DFN) architecture was recently proposed as a deep learning model suited for hearing aid devices. Despite its competitive performance on numerous benchmarks, it still follows a ‘one-size-fits-all’ ... 详细信息
来源: 评论
GatedxLSTM: A Multimodal Affective Computing Approach for Emotion Recognition in Conversations
arXiv
收藏 引用
arXiv 2025年
作者: Li, Yupei Sun, Qiyang Murthy, Sunil Munthumoduku Krishna Alturki, Emran Schuller, Björn W. GLAM Department of Computing Imperial College London United Kingdom CHI – Chair of Health Informatics MRI Technical University of Munich Germany CHI – Chair of Health Informatics Technical University of Munich Germany relAI – The Konrad Zuse School of Excellence in Reliable AI Munich Germany MDSI – Munich Data Science Institute Munich Germany MCML – Munich Center for Machine Learning Munich Germany
Affective Computing (AC) is essential for advancing Artificial General Intelligence (AGI), with emotion recognition serving as a key component. However, human emotions are inherently dynamic, influenced not only by an... 详细信息
来源: 评论
Is L2 physics-informed loss always suitable for training physics-informed neural network?  22
Is L2 physics-informed loss always suitable for training phy...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Chuwei Wang Shanda Li Di He Liwei Wang School of Mathematical Sciences Peking University Machine Learning Department School of Computer Science Carnegie Mellon University and Zhejiang Lab National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University and Center for Data Science Peking University
The Physics-Informed Neural Network (PINN) approach is a new and promising way to solve partial differential equations using deep learning. The L2 Physics- Informed Loss is the de-facto standard in training Physics-In...
来源: 评论