咨询与建议

限定检索结果

文献类型

  • 480 篇 期刊文献
  • 338 篇 会议
  • 1 册 图书

馆藏范围

  • 819 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 349 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 122 篇 生物工程
    • 83 篇 信息与通信工程
    • 71 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 57 篇 电气工程
    • 55 篇 光学工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 386 篇 理学
    • 192 篇 数学
    • 127 篇 生物学
    • 121 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 58 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 118 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 64 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 8 篇 教育学
  • 1 篇 文学

主题

  • 48 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 image segmentati...
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 658 篇 英文
  • 158 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
819 条 记 录,以下是551-560 订阅
排序:
Predicting the Initial Conditions of the Universe using a Deterministic Neural Network
arXiv
收藏 引用
arXiv 2023年
作者: Jindal, Vaibhav Liang, Albert Singh, Aarti Ho, Shirley Jamieson, Drew Machine Learning Department Carnegie Mellon University United States Cohesity Two Sigma Investments United States Center for Computational Astrophysics Flatiron Institute United States Department of Physics Center for Data Science New York University United States Department of Astrophysical Sciences Princeton University United States Max Planck Institute for Astrophysics Germany Carnegie Mellon University United States
Finding the initial conditions that led to the current state of the universe is challenging because it involves searching over an intractable input space of initial conditions, along with modeling their evolution via ... 详细信息
来源: 评论
APPROXIMATION THEORY, COMPUTING, AND DEEP learning ON THE WASSERSTEIN SPACE
arXiv
收藏 引用
arXiv 2023年
作者: Fornasier, Massimo Heid, Pascal Sodini, Giacomo Enrico TUM School of Computation Information Technlogy Department of Mathematics Boltzmannstrasse 3 Garching bei München85748 Germany TUM Institute for Advanced Studies Germany Munich Data Science Institute Germany Munich Center for Machine Learning Germany Institut für Mathematik Fakultät für Mathematik Universität Wien Oskar-Morgenstern-Platz 1 Wien1090 Austria
The challenge of approximating functions in infinite-dimensional spaces from finite samples is widely regarded as formidable. In this study, we delve into the challenging problem of the numerical approximation of Sobo... 详细信息
来源: 评论
Less is More: Facial Landmarks can Recognize a Spontaneous Smile 022
arXiv
收藏 引用
arXiv 2022年
作者: Tushar, Tahrim Faroque Yang, Yan Hossain, Zakir Naim, Sheikh Motahar Mohammed, Nabeel Rahman, Shafin Department of Electrical and Computer Engineering North South University Bangladesh Biological Data Science Institute The Australian National University Canberra Australia CSIRO Agriculture & Food Canberra Australia CSIRO Machine Learning & Artificial Intelligence Future Science Platform Canberra Australia Amazon Web Services United States
Smile veracity classification is a task of interpreting social interactions. Broadly, it distinguishes between spontaneous and posed smiles. Previous approaches used hand-engineered features from facial landmarks or c... 详细信息
来源: 评论
Convergence of Multiscale Reinforcement Q-learning Algorithms for Mean Field Game and Control Problems
arXiv
收藏 引用
arXiv 2023年
作者: Angiuli, Andrea Fouque, Jean-Pierre Laurière, Mathieu Zhang, Mengrui Prime Machine Learning Team Amazon. 320 Westlake Ave N SEA83 SeattleWA98109 United States Department of Statistics and Applied Probability South Hall University of California Santa BarbaraCA93106 United States Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai NYU Shanghai 567 West Yangsi Road Shanghai200126 China
We establish the convergence of the unified two-timescale Reinforcement learning (RL) algorithm presented in [Angiuli et al., 2022]. This algorithm provides solutions to Mean Field Game (MFG) or Mean Field Control (MF... 详细信息
来源: 评论
Even order contributions to relative energies vanish for antisymmetric perturbations
arXiv
收藏 引用
arXiv 2023年
作者: von Lilienfeld, O. Anatole Domenichini, Giorgio Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany University of Vienna Faculty of Physics Kolingasse 14-16 ViennaAT-1090 Austria University of Vienna Vienna Doctoral School in Physics Boltzmanngasse 5 ViennaAT-1090 Austria
We show that even order contributions to energy differences between any two iso-electronic compounds vanish when using perturbation theory around an averaged electronic reference Hamiltonian. This finding generalizes ... 详细信息
来源: 评论
Modeling non-genetic information dynamics in cells using reservoir computing
arXiv
收藏 引用
arXiv 2023年
作者: Niraula, Dipesh Naqa, Issam El Tuszynski, Jack Adam Gatenby, Robert A. Department of Machine Learning Moffitt Cancer Center TampaFL United States Departments of Physics and Oncology University of Alberta EdmontonAB Canada Department of Data Science and Engineering The Silesian University of Technology Gliwice44-100 Poland Department of Mechanical and Aerospace Engineering Politecnico di Torino TurinI-10129 Italy Departments of Radiology and Integrated Mathematical Oncology Moffitt Cancer Center TampaFL United States
Virtually all cells use energy and ion-specific membrane pumps to maintain large transmembrane gradients of Na+, K+, Cl−, Mg++, and Ca++. Although they consume up to 1/3 of a cell’s energy budget, the corresponding e... 详细信息
来源: 评论
AutoMS: automatic model selection for novelty detection with error rate control  22
AutoMS: automatic model selection for novelty detection with...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Yifan Zhang Haiyan Jiang Haojie Ren Changliang Zou Dejing Dou School of Statistics and Data Sciences LPMC KLMDASR and LEBPS Nankai University Tianjin China Machine Learning Department MBZUAI Abu Dhabi UAE and Baidu Research Baidu Inc. Beijing China School of Mathematical Science Shanghai Jiao Tong University Shanghai China Baidu Research Baidu Inc. Beijing China
Given an unsupervised novelty detection task on a new dataset, how can we automatically select a "best" detection model while simultaneously controlling the error rate of the best model? For novelty detectio...
来源: 评论
The Role of Blockchain Technology in Supply chain Management for data Security
The Role of Blockchain Technology in Supply chain Management...
收藏 引用
Blockchain and Distributed Systems Security (ICBDS), IEEE International Conference on
作者: Dipika R. Birari Vijay U. Rathod Aarti Dandavate Nilesh Shelke Ranjit Kumar Masira M. S Kulkarni Department of Information Technology Army Institute of Technology Pune Department of Artificial Intelligent and Machine Learning G H Raisoni College of Engineering and Management Wagholi Pune Department of Computer Engineering Dhole Patil College of Engineering Pune Department of Computer Science and Engineering Symbiosis Institute of Technology Nagpur Campus Symbiosis International Deemed University Pune India Department of Computer Engineering Ajeenkya D Y Patil University Pune Department of Cyber Security and Data Science G H Raisoni College of Engineering and Management Wagholi Pune
In a traditional supply chain system, the process of producing raw materials so that a product may be delivered to a customer is a manual operation with insufficient data and transaction security. The entire process i... 详细信息
来源: 评论
MCBench: A Benchmark Suite for Monte Carlo Sampling Algorithms
arXiv
收藏 引用
arXiv 2025年
作者: Ding, Zeyu Grunwald, Cornelius Ickstadt, Katja Kröninger, Kevin La Cagnina, Salvatore Department of Statistics TU Dortmund University Vogelpothsweg 87 Dortmund44227 Germany Department of Physics TU Dortmund University Otto-Hahn-Straße 4 Dortmund44227 Germany Lamarr-Institute for Machine Learning and Artificial Intelligence Joseph-von-Fraunhofer-Straße 25 Dortmund44227 Germany TU Dortmund - Center for Data Science and Simulation TU Dortmund University August-Schmidt-Straße 4 Dortmund44227 Germany
In this paper, we present MCBench, a benchmark suite designed to assess the quality of Monte Carlo (MC) samples. The benchmark suite enables quantitative comparisons of samples by applying different metrics, including... 详细信息
来源: 评论
RBGNet: Ray-based Grouping for 3D Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Haiyang Shi, Shaoshuai Yang, Ze Fang, Rongyao Qian, Qi Li, Hongsheng Schiele, Bernt Wang, Liwei Center for Data Science Peking University China Max Planck Institute for Informatics Germany University of Toronto Canada The Chinese University of Hong Kong Hong Kong Alibaba Group China Key Laboratory of Machine Perception MOE School of Artificial Intelligence Peking University China International Center for Machine Learning Research Peking University China
As a fundamental problem in computer vision, 3D object detection is experiencing rapid growth. To extract the point-wise features from the irregularly and sparsely distributed points, previous methods usually take a f... 详细信息
来源: 评论