咨询与建议

限定检索结果

文献类型

  • 480 篇 期刊文献
  • 338 篇 会议
  • 1 册 图书

馆藏范围

  • 819 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 349 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 122 篇 生物工程
    • 83 篇 信息与通信工程
    • 71 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 57 篇 电气工程
    • 55 篇 光学工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 386 篇 理学
    • 192 篇 数学
    • 127 篇 生物学
    • 121 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 58 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 118 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 64 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 8 篇 教育学
  • 1 篇 文学

主题

  • 48 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 image segmentati...
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 658 篇 英文
  • 158 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
819 条 记 录,以下是571-580 订阅
排序:
AI-Optimized Placement and Routing for PCB Design
AI-Optimized Placement and Routing for PCB Design
收藏 引用
International Conference on science Technology Engineering and Management (ICONSTEM)
作者: P. Sathyaraj S. Arulkumar A. Ajina Kedir Beshir L. Umasankar A.N. Arularasan Department of Electronics and Communication Engineering RMK College of Engineering and Technology Puduvoyal Tamil Nadu India Department of Electrical and Computer Engineering Wachemo University Ethiopia Department of Artificial Intelligence and Machine Learning M S Ramaiah Institute of Technology Bangalore India Department of Electrical and Electronics Engineering S.A. Engineering College Tiruvallur Tamil Nadu India Department of Artificial Intelligence and Data Science Panimalar Engineering College Chennai Tamil Nadu India
Rapid electronic device development requires more complicated and densely packed PCB designs. These systems need properly placed and connected electrical components for best performance and reliability. Complexity and... 详细信息
来源: 评论
Uncertainty quantification for wide-bin unfolding: one-at-a-time strict bounds and prior-optimized confidence intervals
arXiv
收藏 引用
arXiv 2021年
作者: Stanley, Michael Patil, Pratik Kuusela, Mikael Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science NSF AI Planning Institute for Data-Driven Discovery in Physics Carnegie Mellon University PittsburghPA15213 United States
Unfolding is an ill-posed inverse problem in particle physics aiming to infer a true particle-level spectrum from smeared detector-level data. For computational and practical reasons, these spaces are typically discre... 详细信息
来源: 评论
The Alchemical Integral Transform revisited
arXiv
收藏 引用
arXiv 2023年
作者: Krug, Simon León von Lilienfeld, O. Anatole Machine Learning Group Technische Universität Berlin Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Chemical Physics Theory Group Department of Chemistry University of Toronto St. George Campus TorontoON Canada Department of Materials Science and Engineering University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoON Canada Department of Physics University of Toronto St. George Campus TorontoON Canada Acceleration Consortium University of Toronto TorontoON Canada
We recently introduced the Alchemical Integral Transform (AIT) enabling the prediction of energy differences, and guessed an Ansatz to parametrize space r in some alchemical change λ. Here, we present a rigorous deri... 详细信息
来源: 评论
Sparse Autoencoders Learn Monosemantic Features in Vision-Language Models
arXiv
收藏 引用
arXiv 2025年
作者: Pach, Mateusz Karthik, Shyamgopal Bouniot, Quentin Belongie, Serge Akata, Zeynep Technical University of Munich Germany Helmholtz Munich Germany Munich Center of Machine Learning Germany Munich Data Science Institute Germany University of Tübingen Germany University of Copenhagen Denmark
Sparse Autoencoders (SAEs) have recently been shown to enhance interpretability and steerability in Large Language Models (LLMs). In this work, we extend the application of SAEs to Vision-Language Models (VLMs), such ...
来源: 评论
Non-convex distributionally robust optimization: non-asymptotic analysis  21
Non-convex distributionally robust optimization: non-asympto...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Jikai Jin Bohang Zhang Haiyang Wang Liwei Wang School of Mathematical Sciences Peking University Key Laboratory of Machine Perception MOE School of EECS Peking University Center of Data Science Peking University Key Laboratory of Machine Perception MOE School of EECS Peking University and Center of Data Science Peking University and Institute for Artificial Intelligence Peking Unviersity
Distributionally robust optimization (DRO) is a widely-used approach to learn models that are robust against distribution shift. Compared with the standard optimization setting, the objective function in DRO is more d...
来源: 评论
Ab Initio Generalized Langevin Equation
arXiv
收藏 引用
arXiv 2022年
作者: Xie, Pinchen Car, Roberto Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Department of Chemistry Department of Physics Program in Applied and Computational Mathematics Princeton Institute for the Science and Technology of Materials Princeton University PrincetonNJ08544 United States AI for Science Institute Beijing China Center for Machine Learning Research School of Mathematical Sciences Peking University Beijing China
We introduce a machine learning-based approach called ab initio generalized Langevin equation (AIGLE) to model the dynamics of slow collective variables in materials and molecules. In this scheme, the parameters are l... 详细信息
来源: 评论
Secure Device on boarding in IoT Networks
Secure Device on boarding in IoT Networks
收藏 引用
International Conference on science Technology Engineering and Management (ICONSTEM)
作者: P. Sathyaraj Shankar Nayak Bhukya S. Rukmani Devi Chetan Umadi A. Ajina Rajendiran M Department of Electronics and Communication Engineering RMK College of Engineering and Technology Puduvoyal Tamil Nadu India Department of Computer Science Engineering (Data Science) CMR Technical Campus Hyderabad Telangana India Department of Computer Science Saveetha College of Liberal Arts and Sciences SIMATS Deemed to be University Chennai Tamil Nadu India Department of Electronics& Telecommunication Engineering Dayananda Sagar College of Engineering Bengaluru Karnataka India Department of Artificial Intelligence and Machine Learning M S Ramaiah Institute of Technology Bangalore India Department of Computer Science and Engineering Panimalar Engineering College Chennai Tamil Nadu India
The fast spread of Internet of Things (IoT) gadgets has led to unprecedented number of interconnected systems offering many applications and services. Diverse elements in IoT networks increase security vulnerabilities... 详细信息
来源: 评论
End-to-end topographic networks as models of cortical map formation and human visual behaviour: moving beyond convolutions
arXiv
收藏 引用
arXiv 2023年
作者: Lu, Zejin Doerig, Adrien Bosch, Victoria Krahmer, Bas Kaiser, Daniel Cichy, Radoslaw M. Kietzmann, Tim C. Machine Learning Institute for Cognitive Science Osnabrück University Osnabrück Germany Neural Computation Group Mathematical Institute Justus-Liebig-Universität Gießen Gießen Germany Center for Mind Brain and Behavior Philipps-Universität Marburg and Justus-Liebig-Universität Gießen Marburg Germany Neural Dynamics of Visual Cognition Group Department of Education and Psychology Freie Universität Berlin Berlin Germany
Computational models are an essential tool for understanding the origin and functions of the topographic organisation of the primate visual system. Yet, vision is most commonly modelled by convolutional neural network... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language Processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Unleashing WSN Potential: Bowerbird Optimized Energy-Conscious Multipath Clustering with Causal Dilated Cosine for Enhanced Load Balancing
Unleashing WSN Potential: Bowerbird Optimized Energy-Conscio...
收藏 引用
Sentiment Analysis and Deep learning (ICSADL), International Conference on
作者: Rakesh Kumar Joon Anitha R Saravana Selvan P. S. Latha Mageshwari S. Gayathri Priya K. Malathi Department of Electronics and Communication Engineering Ganga Institute of Technology and Management Kablana Haryana India Department of Artificial Intelligence and Data Science S.A. Engineering College Chennai Tamil Nadu India School of Professional Engineering Manukau Institute of Technology Auckland New Zealand Department of Science & Humanities (Physics) R. M. K. Engineering College Kavaraipettai Tamil Nadu India Department of Electronics and Communication Engineering R.M.D. Engineering College Kavaraipettai Tamil Nadu India Department of Artificial Intelligence and Machine Learning Saveetha Engineering College Chennai Tamil Nadu India
Wireless Sensor Networks (WSNs) are essential in the collection of real time data across different fields, including environmental monitoring and process control. However, due to the bounded amount of energy in sensor... 详细信息
来源: 评论