咨询与建议

限定检索结果

文献类型

  • 480 篇 期刊文献
  • 338 篇 会议
  • 1 册 图书

馆藏范围

  • 819 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 349 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 122 篇 生物工程
    • 83 篇 信息与通信工程
    • 71 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 57 篇 电气工程
    • 55 篇 光学工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 386 篇 理学
    • 192 篇 数学
    • 127 篇 生物学
    • 121 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 58 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 118 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 64 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 8 篇 教育学
  • 1 篇 文学

主题

  • 48 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 image segmentati...
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 658 篇 英文
  • 158 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
819 条 记 录,以下是581-590 订阅
排序:
Towards a Unified Benchmark and Framework for Deep learning-Based Prediction of Nuclear Magnetic Resonance Chemical Shifts
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Fanjie Guo, Wentao Wang, Feng Yao, Lin Wang, Hongshuai Tang, Fujie Gao, Zhifeng Zhang, Linfeng Weinan, E. Tian, Zhong-Qun Cheng, Jun State Key Laboratory of Physical Chemistry of Solid Surface iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen361005 China DP Technology Beijing100080 China Department of Chemistry University of California Davis95616 United States Pen-Tung Sah Institute of Micro-Nano Science and Technology Xiamen University Xiamen361005 China Xiamen361005 China AI for Science Institute Beijing100080 China Center for Machine Learning Research Peking University Beijing100871 China School of Mathematical Sciences Peking University Beijing100871 China Institute of Artificial Intelligence Xiamen University Xiamen361005 China
The study of structure-spectrum relationships is essential for spectral interpretation, impacting structural elucidation and material design. Predicting spectra from molecular structures is challenging due to their co... 详细信息
来源: 评论
learning Embeddings for Image Clustering: An Empirical Study of Triplet Loss Approaches
Learning Embeddings for Image Clustering: An Empirical Study...
收藏 引用
International Conference on Pattern Recognition
作者: Kalun Ho Janis Keuper Franz-Josef Pfreundt Margret Keuper Data and Web Science Group University of Mannheim Germany Institute for Machine Learning and Analytics (IMLA) Offenburg University Germany Competence Center High Performance Computing Fraunhofer ITWM Kaiserslautern Germany
In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolution... 详细信息
来源: 评论
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
arXiv
收藏 引用
arXiv 2022年
作者: Hedström, Anna Weber, Leander Bareeva, Dilyara Krakowczyk, Daniel Motzkus, Franz Samek, Wojciech Lapuschkin, Sebastian Höhne, Marina M.-C. Understandable Machine Intelligence Lab TU Berlin Berlin10587 Germany Department of Electrical Engineering and Computer Science TU Berlin Berlin10587 Germany Department of Artificial Intelligence Fraunhofer Heinrich-Hertz-Institute Berlin10587 Germany Department of Computer Science University of Potsdam Potsdam14476 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
The evaluation of explanation methods is a research topic that has not yet been explored deeply, however, since explainability is supposed to strengthen trust in artificial intelligence, it is necessary to systematica... 详细信息
来源: 评论
Estimating the robustness of classification models by the structure of the learned feature-space
arXiv
收藏 引用
arXiv 2021年
作者: Ho, Kalun Pfreundt, Franz-Josef Keuper, Janis Keuper, Margret CC-HPC Fraunhofer ITWM Fraunhofer-Platz 1 Kaiserslautern67663 Germany Institute for Machine Learning and Analytics Offenburg University Germany Data and Web Science Group University of Mannheim Germany
Over the last decade, the development of deep image classification networks has mostly been driven by the search for the best performance in terms of classification accuracy on standardized benchmarks like ImageNet. M... 详细信息
来源: 评论
Touchstone benchmark: are we on the right way for evaluating AI algorithms for medical segmentation?  24
Touchstone benchmark: are we on the right way for evaluating...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Pedro R. A. S. Bassi Wenxuan Li Yucheng Tang Fabian Isensee Zifu Wang Jieneng Chen Yu-Cheng Chou Saikat Roy Yannick Kirchhoff Maximilian Rokuss Ziyan Huang Jin Ye Junjun He Tassilo Wald Constantin Ulrich Michael Baumgartner Klaus H. Maier-Hein Paul Jaeger Yiwen Ye Yutong Xie Jianpeng Zhang Ziyang Chen Yong Xia Zhaohu Xing Lei Zhu Yousef Sadegheih Afshin Bozorgpour Pratibha Kumari Reza Azad Dorit Merhof Pengcheng Shi Ting Ma Yuxin Du Fan Bai Tiejun Huang Bo Zhao Haonan Wang Xiaomeng Li Hanxue Gu Haoyu Dong Jichen Yang Maciej A. Mazurowski Saumya Gupta Linshan Wu Jiaxin Zhuang Hao Chen Holger Roth Daguang Xu Matthew B. Blaschko Sergio Decherchi Andrea Cavalli Alan L. Yuille Zongwei Zhou Department of Computer Science Johns Hopkins University and Department of Pharmacy and Biotechnology University of Bologna and Center for Biomolecular Nanotechnologies Istituto Italiano di Tecnologia Department of Computer Science Johns Hopkins University NVIDIA Division of Medical Image Computing German Cancer Research Center (DKFZ) and Helmholtz Imaging German Cancer Research Center (DKFZ) ESAT-PSI KU Leuven Division of Medical Image Computing German Cancer Research Center (DKFZ) and Faculty of Mathematics and Computer Science Heidelberg University Division of Medical Image Computing German Cancer Research Center (DKFZ) and Faculty of Mathematics and Computer Science Heidelberg University and HIDSS4Health - Helmholtz Information and Data Science School for Health Shanghai Jiao Tong University Shanghai Artificial Intelligence Laboratory Division of Medical Image Computing German Cancer Research Center (DKFZ) Division of Medical Image Computing German Cancer Research Center (DKFZ) and Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Helmholtz Imaging German Cancer Research Center (DKFZ) and Interactive Machine Learning Group (IML) DKFZ School of Computer Science and Engineering Northwestern Polytechnical University Australian Institute for Machine Learning The University of Adelaide College of Computer Science and Technology Zhejiang University Hong Kong University of Science and Technology (Guangzhou) Hong Kong University of Science and Technology (Guangzhou) and Hong Kong University of Science and Technology Faculty of Informatics and Data Science University of Regensburg Faculty of Electrical Engineering and Information Technology RWTH Aachen University Faculty of Informatics and Data Science University of Regensburg and Fraunhofer Institute for Digital Medicine MEVIS Electronic & Information Engineering School Harbin Institute of Technology (Shenzhen) Shanghai Jiao Tong University and Beijing Academy of Artificial Intelligence (BAAI) S
How can we test AI performance? This question seems trivial, but it isn't. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and ...
来源: 评论
Myocarditis Diagnosis: A Method using Mutual learning-Based ABC and Reinforcement learning
Myocarditis Diagnosis: A Method using Mutual Learning-Based ...
收藏 引用
International Symposium on Computational Intelligence and Informatics
作者: Saba Danaei Arsam Bostani Seyed Vahid Moravvej Fardin Mohammadi Roohallah Alizadehsani Afshin Shoeibi Hamid Alinejad-Rokny Saeid Nahavandi Adiban Institute of Higher Education Semnan Iran Department of mechanical engineering of biosystems Urmia university Department of exercise physiology & health science University of tehran Internship in UNSW BioMedical Machine Learning Lab Sydney NSW Australia Institute for Intelligent Systems Research and Innovation (IISRI) Deakin University Waurn Ponds Victoria Australia UNSW Data Science Hub The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW Australia
Myocarditis occurs when the heart muscle becomes inflamed and inflammation occurs when your body’s immune system responds to infections. It can be diagnosed using cardiac magnetic resonance image (MRI), a non-invasiv... 详细信息
来源: 评论
Ultrasound-Based Kidney Disease Detection: Resampling Cubature Kalman Filter and Physics-Guided VGG Cross-Contextual Network
Ultrasound-Based Kidney Disease Detection: Resampling Cubatu...
收藏 引用
International Conference on Inventive Computation Technologies (ICICT)
作者: Padmanayana N.S.L. Kumar Kurumeti Veena S Ch. Raja Vijay Jagdish Upadhye Ramya Maranan Department of Artificial Intelligence and Data Science Engineering AJ Institute of Engineering and Technology Mangaluru Karnataka India Department of Artificial Intelligence and Machine Learning Aditya University Surampalem Andhra Pradesh India Department of Electronics and Communication Engineering SJC Institute of Technology Chikkaballapur Karnataka India Department of Electronics and Communication Engineering Mahatma Gandhi Institute of Technology Hyderabad Telangana India Department of Microbiology Dept of Microbiology Research and Development Cell (RDC) Parul Institute of Applied Sciences (PIAS) Parul University Post Limda Waghodia Gujarat India Department of Research and Innovation Saveetha School of Engineering SIMATS Chennai Tamil Nadu India
Limitations of ultrasound-based identification of kidney disease include poor image resolution, operator reliance, and lack of detection of small tissue anomalies. Diagnostic accuracy may be affected by artefacts or n... 详细信息
来源: 评论
Automatic Diagnosis of Myocarditis Disease in Cardiac MRI Modality using Deep Transformers and Explainable Artificial Intelligence
arXiv
收藏 引用
arXiv 2022年
作者: Jafari, Mahboobeh Shoeibi, Afshin Ghassemi, Navid Heras, Jonathan Ling, Sai Ho Beheshti, Amin Zhang, Yu-Dong Wang, Shui-Hua Alizadehsani, Roohallah Gorriz, Juan M. Acharya, U. Rajendra Rokny, Hamid Alinejad Internship in BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia Data Science and Computational Intelligence Institute University of Granada Spain Department of Mathematics and Computer Science University of La Rioja La Rioja Spain Australia Data Analytics Lab Department of Computing Macquarie University SydneyNSW2109 Australia School of Computing and Mathematical Sciences University of Leicester Leicester United Kingdom Deakin University VIC3217 Australia Department of Psychiatry University of Cambridge United Kingdom School of Mathematics Physics and Computing University of Southern Queensland Springfield Australia BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia UNSW Data Science Hub The University of New South Wales SydneyNSW2052 Australia Research Centre Macquarie University Sydney2109 Australia
Myocarditis is a significant cardiovascular disease (CVD) that poses a threat to the health of many individuals by causing damage to the myocardium. The occurrence of microbes and viruses, including the likes of HIV, ... 详细信息
来源: 评论
Protocol to explain support vector machine predictions via exact Shapley value computation
收藏 引用
STAR Protocols 2024年 第2期5卷 103010页
作者: Mastropietro, Andrea Bajorath, Jürgen Deparment of Computer Control and Management Engineering “Antonio Ruberti” Sapienza University of Rome Via Ariosto 25 Rome 00185 Italy Department of Life Science Informatics and Data Science B-IT LIMES Program Unit Chemical Biology and Medicinal Chemistry Rheinische Friedrich-Wilhelms-Universität Friedrich-Hirzebruch-Allee 5/6 Bonn 53115 Germany Lamarr Institute for Machine Learning and Artificial Intelligence Friedrich-Hirzebruch-Allee 5/6 Bonn 53115 Germany
Shapley values from cooperative game theory are adapted for explaining machine learning predictions. For large feature sets used in machine learning, Shapley values are approximated. We present a protocol for two tech... 详细信息
来源: 评论
Transition State Search and Geometry Relaxation throughout Chemical Compound Space with Quantum machine learning
arXiv
收藏 引用
arXiv 2022年
作者: Heinen, Stefan Von Rudorff, Guido Falk Von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 14-16 WienAT-1090 Austria Vector Institute for Artificial Intelligence ON TorontoM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus ON Toronto Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
We use energies and forces predicted within response operator based quantum machine learning (OQML) to perform geometry optimization and transition state search calculations with legacy optimizers. For randomly sample... 详细信息
来源: 评论